SAGA-GIS Module Library Documentation (v2.3.0)

Module TOPMODEL

Simple Subcatchment Version of TOPMODEL

Based on the 'TOPMODEL demonstration program v95.02' by Keith Beven (Centre for Research on Environmental Systems and Statistics, Institute of Environmental and Biological Sciences, Lancaster University, Lancaster LA1 4YQ, UK) and the C translation of the Fortran source codes implemented in GRASS.

This program allows single or multiple subcatchment calculations but with single average rainfall and potential evapotranspiration inputs to the whole catchment. Subcatchment discharges are routed to the catchment outlet using a linear routing algorithm with constant main channel velocity and internal subcatchment routing velocity. The program requires ln(a/tanB) distributions for each subcatchment. These may be calculated using the GRIDATB program which requires raster elevation data as input. It is recommended that those data should be 50 m resolution or better.

NOTE that TOPMODEL is not intended to be a traditional model package but is more a collection of concepts that can be used **** where appropriate ****. It is up to the user to verify that the assumptions are appropriate (see discussion in Beven et al.(1994). This version of the model will be best suited to catchments with shallow soils and moderate topography which do not suffer from excessively long dry periods. Ideally predicted contributing areas should be checked against what actually happens in the catchment.

It includes infiltration excess calculations and parameters based on the exponential conductivity Green-Ampt model of Beven (HSJ, 1984) but if infiltration excess does occur it does so over whole area of a subcatchment. Spatial variability in conductivities can however be handled by specifying Ko parameter values for different subcatchments, even if they have the same ln(a/tanB) and routing parameters, ie. to represent different parts of the area.

Note that time step calculations are explicit ie. SBAR at start of time step is used to determine contributing area. Thus with long (daily) time steps contributing area depends on initial value together with any volume filling effect of daily inputs. Also baseflow at start of time step is used to update SBAR at end of time step.

References
- Beven, K., Kirkby, M.J., Schofield, N., Tagg, A.F. (1984): Testing a physically-based flood forecasting model (TOPMODEL) for threee U.K. catchments, Journal of Hydrology, H.69, S.119-143.

- Beven, K. (1997): TOPMODEL - a critique, Hydrological Processes, Vol.11, pp.1069-1085.

Parameters

 NameTypeIdentifierDescriptionConstraints
InputTopographic Wetness IndexGrid (input)ATANB--
Weather RecordsTable (input)WEATHER--
OutputSoil Moisture Deficit (*)Grid (optional output)MOIST--
Simulation OutputTable (output)TABLE--
OptionsGrid systemGrid systemPARAMETERS_GRID_SYSTEMGrid system-
Precipitation [m / dt]Table fieldRECORD_P--
Evapotranspiration [m / dt]Table fieldRECORD_ET--
Date/Time (*)Table fieldRECORD_DATE--
Time Step [h]Floating pointDTIME-Default: 1.000000
Number of ClassesIntegerNCLASSES-Minimum: 1
Default: 30
Initial subsurface flow per unit area [m/h]Floating pointP_QS0-Default: 0.000033
Areal average of ln(T0) = ln(Te) [ln(m^2/h)]Floating pointP_LNTE-Default: 5.000000
Model parameter [m]Floating pointP_MODEL-Default: 0.032000
Initial root zone storage deficit [m]Floating pointP_SR0-Default: 0.002000
Maximum root zone storage deficit [m]Floating pointP_SRZMAX-Default: 0.050000
Unsaturated zone time delay per unit storage deficit [h]Floating pointP_SUZ_TD-Default: 50.000000
Main channel routing velocity [m/h]Floating pointP_VCH-Default: 3600.000000
Internal subcatchment routing velocity [m/h]Floating pointP_VR-Default: 3600.000000
Surface hydraulic conductivity [m/h]Floating pointP_K0-Default: 1.000000
Wetting front suction [m]Floating pointP_PSI-Default: 0.020000
Water content change across the wetting frontFloating pointP_DTHETA-Default: 0.100000
Green-Ampt InfiltrationBooleanBINF-Default: 1
(*) optional

Command-line

Usage: saga_cmd sim_hydrology 2 [-ATANB <str>] [-MOIST <str>] [-WEATHER <str>] [-RECORD_P <str>] [-RECORD_ET <str>] [-RECORD_DATE <str>] [-TABLE <str>] [-DTIME <double>] [-NCLASSES <num>] [-P_QS0 <double>] [-P_LNTE <double>] [-P_MODEL <double>] [-P_SR0 <double>] [-P_SRZMAX <double>] [-P_SUZ_TD <double>] [-P_VCH <double>] [-P_VR <double>] [-P_K0 <double>] [-P_PSI <double>] [-P_DTHETA <double>] [-BINF <str>]
  -ATANB:<str>      	Topographic Wetness Index
	Grid (input)
  -MOIST:<str>      	Soil Moisture Deficit
	Grid (optional output)
  -WEATHER:<str>    	Weather Records
	Table (input)
  -RECORD_P:<str>   	Precipitation [m / dt]
	Table field
  -RECORD_ET:<str>  	Evapotranspiration [m / dt]
	Table field
  -RECORD_DATE:<str>	Date/Time
	Table field
  -TABLE:<str>      	Simulation Output
	Table (output)
  -DTIME:<double>   	Time Step [h]
	Floating point
	Default: 1.000000
  -NCLASSES:<num>   	Number of Classes
	Integer
	Minimum: 1
	Default: 30
  -P_QS0:<double>   	Initial subsurface flow per unit area [m/h]
	Floating point
	Default: 0.000033
  -P_LNTE:<double>  	Areal average of ln(T0) = ln(Te) [ln(m^2/h)]
	Floating point
	Default: 5.000000
  -P_MODEL:<double> 	Model parameter [m]
	Floating point
	Default: 0.032000
  -P_SR0:<double>   	Initial root zone storage deficit [m]
	Floating point
	Default: 0.002000
  -P_SRZMAX:<double>	Maximum root zone storage deficit [m]
	Floating point
	Default: 0.050000
  -P_SUZ_TD:<double>	Unsaturated zone time delay per unit storage deficit [h]
	Floating point
	Default: 50.000000
  -P_VCH:<double>   	Main channel routing velocity [m/h]
	Floating point
	Default: 3600.000000
  -P_VR:<double>    	Internal subcatchment routing velocity [m/h]
	Floating point
	Default: 3600.000000
  -P_K0:<double>    	Surface hydraulic conductivity [m/h]
	Floating point
	Default: 1.000000
  -P_PSI:<double>   	Wetting front suction [m]
	Floating point
	Default: 0.020000
  -P_DTHETA:<double>	Water content change across the wetting front
	Floating point
	Default: 0.100000
  -BINF:<str>       	Green-Ampt Infiltration
	Boolean
	Default: 1