The Gravitational Process Path (GPP) model can be used to simulate the process path and run-out area of gravitational processes based on a digital terrain model (DTM). The conceptual model combines several components (process path, run-out length, sink filling and material deposition) to simulate the movement of a mass point from an initiation site to the deposition area. For each component several modeling approaches are provided, which makes the tool configurable for different processes such as rockfall, debris flows or snow avalanches.
The tool can be applied to regional-scale studies such as natural hazard susceptibility mapping but also contains components for scenario-based modeling of single events. Both the modeling approaches and precursor implementations of the tool have proven their applicability in numerous studies, also including geomorphological research questions such as the delineation of sediment cascades or the study of process connectivity.
Please provide the following reference in your work if you are using the GPP model:
| Name | Type | Identifier | Description | Constraints |
Input | DEM | Grid (input) | DEM | Digital elevation model [m]. | - |
Release Areas | Grid (input) | RELEASE_AREAS | Release areas encoded by unique integer IDs, all other cells NoData [-]. | - |
Material (*) | Grid (optional input) | MATERIAL | Height of material available in each start cell [m]. | - |
Friction Angle (*) | Grid (optional input) | FRICTION_ANGLE_GRID | Spatially distributed friction angles [degree]. Optionally used with the Geometric Gradient, Fahrboeschung's angle or Shadow Angle friction model. | - |
Slope Impact Areas (*) | Grid (optional input) | SLOPE_IMPACT_GRID | Slope impact grid, impact areas encoded with valid values, all other NoData. Optionally used with the Shadow Angle or the 1-parameter friction model. | - |
Friction Parameter Mu (*) | Grid (optional input) | FRICTION_MU_GRID | Spatially distributed friction parameter mu [-], optionally used with the 1-parameter friction model or the PCM Model. | - |
Mass to Drag Ratio (*) | Grid (optional input) | FRICTION_MASS_TO_DRAG_GRID | Spatially distributed mass to drag ratio [m], optionally used with the PCM Model. | - |
Output | Process Area | Grid (output) | PROCESS_AREA | Delineated process area with encoded transition frequencies [count]. | - |
Deposition (*) | Grid (optional output) | DEPOSITION | Height of material deposited in each cell [m]. Optional output in case a grid with material amounts is provided as input. | - |
Maximum Velocity (*) | Grid (optional output) | MAX_VELOCITY | Maximum velocity observed in each cell [m/s]. Optional output of the 1-parameter friction model and the PCM Model. | - |
Stopping Positions (*) | Grid (optional output) | STOP_POSITIONS | Stopping positions, showing cells in which the run-out length has been reached [count]. | - |
Options | Grid system | Grid system | PARAMETERS_GRID_SYSTEM | - | - |
Model | Choice | PROCESS_PATH_MODEL | Choose a process path model. | Available Choices: [0] Maximum Slope [1] Random Walk Default: 1 |
Slope Threshold | Floating point | RW_SLOPE_THRES | In case the local slope is greater as this threshold [degree], no lateral spreading is modeled. | Minimum: 0.000000 Maximum: 90.000000 Default: 40.000000 |
Exponent | Floating point | RW_EXPONENT | The exponent [-] is controlling the amount of lateral spreading in case the local slope is in between zero and the slope threshold. | Minimum: 0.000000 Default: 2.000000 |
Persistence Factor | Floating point | RW_PERSISTENCE | Factor [-] used as weight for the current flow direction. A higher factor reduces abrupt changes in flow direction. | Minimum: 0.000000 Default: 1.500000 |
Iterations | Integer | GPP_ITERATIONS | The number of model runs from each start cell [-]. | Minimum: 0 Default: 1000 |
Processing Order | Choice | GPP_PROCESSING_ORDER | Choose the processing order. | Available Choices: [0] RAs in Sequence [1] RAs in Sequence per Iteration [2] RAs in Parallel per Iteration Default: 2 |
Seed Value | Integer | GPP_SEED | The seed value used to initialize the pseudo-random number generator. A value of 1 will initialize the generator with the current time, higher numbers will always produce the same succession of values for each seed value [-]. | Minimum: 0 Default: 1 |
Model | Choice | FRICTION_MODEL | Choose a friction model. | Available Choices: [0] None [1] Geometric Gradient (Heim 1932) [2] Fahrboeschung Principle (Heim 1932) [3] Shadow Angle (Evans & Hungr 1988) [4] 1-parameter friction model (Scheidegger 1975) [5] PCM Model (Perla et al. 1980) Default: 0 |
Threshold Angle Free Fall | Floating point | FRICTION_THRES_FREE_FALL | The minimum slope angle [degree] between start cell and current cell for modeling free fall with the Shadow Angle or the 1-parameter friction model. | Minimum: 0.000000 Default: 60.000000 |
Method Impact | Choice | FRICTION_METHOD_IMPACT | Choose the velocity calculation on slope impact with the 1-parameter friction model. | Available Choices: [0] Energy Reduction (Scheidegger 1975) [1] Preserved Component of Velocity (Kirkby & Statham 1975) Default: 0 |
Reduction | Floating point | FRICTION_IMPACT_REDUCTION | The energy reduction [%] on slope impact with the 1-parameter friction model. | Minimum: 0.000000 Maximum: 100.000000 Default: 75.000000 |
Friction Angle | Floating point | FRICTION_ANGLE | Friction angle [degree] used as Geometric Gradient, Fahrboeschung's angle or Shadow Angle. | Minimum: 0.000000 Maximum: 90.000000 Default: 30.000000 |
Mu | Floating point | FRICTION_MU | The (constant) friction parameter mu [-] used with the 1-parameter friction model or the PCM Model. | Minimum: 0.000000 Default: 0.250000 |
Mode of Motion | Choice | FRICTION_MODE_OF_MOTION | Choose the mode of motion on hillslope with the 1-parameter friction model. | Available Choices: [0] Sliding [1] Rolling Default: 0 |
Mass to Drag Ratio | Floating point | FRICTION_MASS_TO_DRAG | The (constant) mass to drag ratio [m] used with the PCM Model. | Minimum: 0.000000 Default: 200.000000 |
Initial Velocity | Floating point | FRICTION_INIT_VELOCITY | The initial velocity [m/s] used with the PCM Model. | Minimum: 0.000000 Default: 1.000000 |
Model | Choice | DEPOSITION_MODEL | Choose a deposition model. | Available Choices: [0] None [1] On Stop [2] Slope & On Stop [3] Velocity & On Stop [4] min(Slope,Velocity) & On Stop Default: 0 |
Initial Deposition on Stop | Floating point | DEPOSITION_INITIAL | The percentage of available material (per run) initially deposited at the stopping position [%]. | Minimum: 0.000000 Maximum: 100.000000 Default: 20.000000 |
Slope Threshold | Floating point | DEPOSITION_SLOPE_THRES | The slope angle below which the deposition of material is starting [degree]. | Minimum: 0.000000 Maximum: 90.000000 Default: 20.000000 |
Velocity Threshold | Floating point | DEPOSITION_VELOCITY_THRES | The velocity below which the deposition of material is starting [m/s]. | Minimum: 0.000000 Default: 15.000000 |
Maximum Deposition along Path | Floating point | DEPOSITION_MAX | The percentage of available material (per run) which is deposited at most (slope or velocity equal zero) [%]. | Minimum: 0.000000 Maximum: 100.000000 Default: 20.000000 |
Minimum Path Length | Floating point | DEPOSITION_MIN_PATH | The minimum path length which has to be reached before material deposition is enabled [m]. | Minimum: 0.000000 Default: 100.000000 |
Minimum Slope | Floating point | SINK_MIN_SLOPE | The minimum slope to preserve on sink filling [degree]. | Minimum: 0.000000 Maximum: 90.000000 Default: 2.500000 |
(*) optional |