Tool Minimum Redundancy Feature Selection
Identify the most relevant features for subsequent classification of tabular data.
The minimum Redundancy Maximum Relevance (mRMR) feature selection algorithm has been developed by Hanchuan Peng
References:
Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. Hanchuan Peng, Fuhui Long, and Chris Ding, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No. 8, pp.1226-1238, 2005.
Minimum redundancy feature selection from microarray gene expression data,
Chris Ding, and Hanchuan Peng, Journal of Bioinformatics and Computational Biology, Vol. 3, No. 2, pp.185-205, 2005.
Hanchuan Peng's mRMR Homepage at http://penglab.janelia.org/proj/mRMR/
- Author: O.Conrad (c) 2014
- Menu: Table|Calculus
Parameters
Name | Type | Identifier | Description | Constraints | |
---|---|---|---|---|---|
Input | Data | Table (input) | DATA | - | - |
Output | Feature Selection | Table (output) | SELECTION | - | - |
Options | Class Identifier | Table field | CLASS | - | - |
Verbose Output | Boolean | VERBOSE | output of intermediate results to execution message window | Default: 1 | |
Number of Features | Integer | mRMR_NFEATURES | - | Minimum: 0 Default: 50 | |
Discretization | Boolean | mRMR_DISCRETIZE | uncheck this means no discretizaton (i.e. data is already integer) | Default: 1 | |
Discretization Threshold | Floating point | mRMR_THRESHOLD | a double number of the discretization threshold; set to 0 to make binarization | Minimum: 0.000000 Default: 1.000000 | |
Selection Method | Choice | mRMR_METHOD | - | Available Choices: [0] Mutual Information Difference (MID) [1] Mutual Information Quotient (MIQ) Default: 0 |
Command-line
Usage: saga_cmd table_calculus 12 [-DATA <str>] [-CLASS <str>] [-SELECTION <str>] [-VERBOSE <str>] [-mRMR_NFEATURES <num>] [-mRMR_DISCRETIZE <str>] [-mRMR_THRESHOLD <double>] [-mRMR_METHOD <str>] -DATA:<str> Data Table (input) -CLASS:<str> Class Identifier Table field -SELECTION:<str> Feature Selection Table (output) -VERBOSE:<str> Verbose Output Boolean Default: 1 -mRMR_NFEATURES:<num> Number of Features Integer Minimum: 0 Default: 50 -mRMR_DISCRETIZE:<str> Discretization Boolean Default: 1 -mRMR_THRESHOLD:<double> Discretization Threshold Floating point Minimum: 0.000000 Default: 1.000000 -mRMR_METHOD:<str> Selection Method Choice Available Choices: [0] Mutual Information Difference (MID) [1] Mutual Information Quotient (MIQ) Default: 0