This tool implements the K-Means cluster analysis for grids in two variants, iterative minimum distance (Forgy 1965) and hill climbing (Rubin 1967).
| | Name | Type | Identifier | Description | Constraints |
| Input | Grids | Grid list (input) | GRIDS | - | - |
| Output | Clusters | Grid (output) | CLUSTER | - | - |
| Statistics | Table (output) | STATISTICS | - | - |
| Options | Grid system | Grid system | PARAMETERS_GRID_SYSTEM | - | - |
| Method | Choice | METHOD | - | Available Choices: [0] Iterative Minimum Distance (Forgy 1965) [1] Hill-Climbing (Rubin 1967) [2] Combined Minimum Distance / Hillclimbing Default: 1 |
| Clusters | Integer | NCLUSTER | Number of clusters | Minimum: 0 Default: 10 |
| Maximum Iterations | Integer | MAXITER | maximum number of iterations, ignored if set to zero (default) | Minimum: 0 Default: 10 |
| Normalise | Boolean | NORMALISE | Automatically normalise grids by standard deviation before clustering. | Default: 0 |
| Update Colors from Features | Boolean | RGB_COLORS | Use the first three features in list to obtain blue, green, red components for class colour in look-up table. | Default: 0 |
| Start Partition | Choice | INITIALIZE | - | Available Choices: [0] random [1] periodical [2] keep values Default: 0 |
| Old Version | Boolean | OLDVERSION | slower but memory saving | Default: 0 |
| Update View | Boolean | UPDATEVIEW | - | Default: 1 |