Tool Cluster Analysis for Point Clouds
Cluster analysis for point clouds.
This tool is a port of the 'Cluster Analysis for Grids' tool from the 'Imagery - Classification' tool library. 
References
- Forgy, E. (1965): Cluster Analysis of multivariate data: efficiency vs. interpretability of classifications. Biometrics 21:768.
 - Rubin, J. (1967): Optimal Classification into Groups: An Approach for Solving the Taxonomy Problem. J. Theoretical Biology, 15:103-144.
 
- Author: Volker Wichmann (c) 2010, LASERDATA GmbH
 
- Menu: Shapes|Point Clouds|Classification
 
Parameters
|   | Name | Type | Identifier | Description | Constraints | 
| Input | Point Cloud | Point Cloud (input) | PC_IN | Input | - | 
| Output | Result (*) | Point Cloud (optional output) | PC_OUT | Output | - | 
 | Statistics | Table (output) | STATISTICS | - | - | 
| Options | Attributes | Table fields | FIELDS | The attribute fields to cluster | - | 
 | Method | Choice | METHOD | - | Available Choices: [0] Iterative Minimum Distance (Forgy 1965) [1] Hill-Climbing (Rubin 1967) [2] Combined Minimum Distance / Hillclimbing Default: 1 | 
 | Clusters | Integer | NCLUSTER | Number of clusters | Minimum: 2 Default: 10 | 
 | Normalise | Boolean | NORMALISE | Automatically normalise attributes by standard deviation before clustering. | Default: 1 | 
| (*) optional | 
Command-line
Usage: saga_cmd pointcloud_tools 11 [-PC_IN <str>] [-FIELDS <str>] [-PC_OUT <str>] [-STATISTICS <str>] [-METHOD <str>] [-NCLUSTER <num>] [-NORMALISE <str>]
  -PC_IN:<str>     	Point Cloud
	Point Cloud (input)
  -FIELDS:<str>    	Attributes
	Table fields
  -PC_OUT:<str>    	Result
	Point Cloud (optional output)
  -STATISTICS:<str>	Statistics
	Table (output)
  -METHOD:<str>    	Method
	Choice
	Available Choices:
	[0] Iterative Minimum Distance (Forgy 1965)
	[1] Hill-Climbing (Rubin 1967)
	[2] Combined Minimum Distance / Hillclimbing
	Default: 1
  -NCLUSTER:<num>  	Clusters
	Integer
	Minimum: 2
	Default: 10
  -NORMALISE:<str> 	Normalise
	Boolean
	Default: 1