Tool Random Forest Table Classification (ViGrA)
Random Forest Table Classification.
References
- Author: B. Bechtel, O.Conrad (c) 2015
- Menu: Table|Tools
Parameters
Name | Type | Identifier | Description | Constraints | |
---|---|---|---|---|---|
Input | Table | Table (input) | TABLE | Table with features, must include class-ID | - |
Output | Feature Importances | Table (output) | IMPORTANCES | - | - |
Options | Features | Table fields | FEATURES | Select features (table fields) for classification | - |
Prediction (*) | Table field | PREDICTION | This is field that will have the prediction results. If not set it will be added to the table. | - | |
Training | Table field | TRAINING | this is the table field that defines the training classes | - | |
Use Label as Identifier | Boolean | LABEL_AS_ID | Use training area labels as identifier in classification result, assumes all label values are integer numbers! | Default: 0 | |
Load Model | File path | RF_IMPORT | - | - | |
Save Model | File path | RF_EXPORT | - | - | |
Tree Count | Integer | RF_TREE_COUNT | How many trees to create? | Minimum: 1 Default: 32 | |
Samples per Tree | Floating point | RF_TREE_SAMPLES | Specifies the fraction of the total number of samples used per tree for learning. | Minimum: 0.000000 Maximum: 1.000000 Default: 1.000000 | |
Sample with Replacement | Boolean | RF_REPLACE | Sample from training population with or without replacement? | Default: 1 | |
Minimum Node Split Size | Integer | RF_SPLIT_MIN_SIZE | Number of examples required for a node to be split. Choose 1 for complete growing. | Minimum: 1 Default: 1 | |
Features per Node | Choice | RF_NODE_FEATURES | - | Available Choices: [0] logarithmic [1] square root [2] all Default: 1 | |
Stratification | Choice | RF_STRATIFICATION | Specifies stratification strategy. Either none, equal amount of class samples, or proportional to fraction of class samples. | Available Choices: [0] none [1] equal [2] proportional Default: 0 | |
(*) optional |
Command-line
Usage: saga_cmd imagery_vigra 11 [-TABLE <str>] [-FEATURES <str>] [-PREDICTION <str>] [-TRAINING <str>] [-LABEL_AS_ID <str>] [-IMPORTANCES <str>] [-RF_IMPORT <str>] [-RF_EXPORT <str>] [-RF_TREE_COUNT <num>] [-RF_TREE_SAMPLES <double>] [-RF_REPLACE <str>] [-RF_SPLIT_MIN_SIZE <num>] [-RF_NODE_FEATURES <str>] [-RF_STRATIFICATION <str>] -TABLE:<str> Table Table (input) -FEATURES:<str> Features Table fields -PREDICTION:<str> Prediction Table field -TRAINING:<str> Training Table field -LABEL_AS_ID:<str> Use Label as Identifier Boolean Default: 0 -IMPORTANCES:<str> Feature Importances Table (output) -RF_IMPORT:<str> Load Model File path -RF_EXPORT:<str> Save Model File path -RF_TREE_COUNT:<num> Tree Count Integer Minimum: 1 Default: 32 -RF_TREE_SAMPLES:<double> Samples per Tree Floating point Minimum: 0.000000 Maximum: 1.000000 Default: 1.000000 -RF_REPLACE:<str> Sample with Replacement Boolean Default: 1 -RF_SPLIT_MIN_SIZE:<num> Minimum Node Split Size Integer Minimum: 1 Default: 1 -RF_NODE_FEATURES:<str> Features per Node Choice Available Choices: [0] logarithmic [1] square root [2] all Default: 1 -RF_STRATIFICATION:<str> Stratification Choice Available Choices: [0] none [1] equal [2] proportional Default: 0