Tool Artificial Neural Network Classification (OpenCV)
Integration of the OpenCV Machine Learning library for Artificial Neural Network classification of gridded features.
References
- Author: O.Conrad (c) 2016, L.Piras (c) 2013
- Menu: Imagery|Classification|Machine Learning
Parameters
Name | Type | Identifier | Description | Constraints | |
---|---|---|---|---|---|
Input | Features | Grid list, input | FEATURES | - | - |
Training Areas | Shapes, input | TRAIN_AREAS | - | - | |
Output | Classification | Grid, output | CLASSES | - | - |
Look-up Table (*) | Table, output, optional | CLASSES_LUT | A reference list of the grid values that have been assigned to the training classes. | - | |
Options | Grid System | Grid system | PARAMETERS_GRID_SYSTEM | - | - |
Normalize | Boolean | NORMALIZE | - | Default: 0 | |
Update Colors from Features | Boolean, GUI | RGB_COLORS | Use the first three features in list to obtain blue, green, red components for class colour in look-up table. | Default: 0 | |
Load Model | File path | MODEL_LOAD | Use a model previously stored to file. | - | |
Class Identifier | Table field | TRAIN_CLASS | - | - | |
Buffer Size | Floating point | TRAIN_BUFFER | For non-polygon type training areas, creates a buffer with a diameter of specified size. | Minimum: 0.000000 Default: 1.000000 | |
Save Model | File path | MODEL_SAVE | Stores model to file to be used for subsequent classifications instead of training areas. | - | |
Number of Layers | Integer | ANN_LAYERS | You can specify the number of layers in the network (not including input and output layer). | Minimum: 1 Default: 3 | |
Number of Neurons | Integer | ANN_NEURONS | You can specify the number of neurons in each layer of the network. | Minimum: 1 Default: 3 | |
Maximum Number of Iterations | Integer | ANN_MAXITER | - | Minimum: 1 Default: 300 | |
Error Change (Epsilon) | Floating point | ANN_EPSILON | Termination criteria of the training algorithm. You can specify how much the error could change between the iterations to make the algorithm continue (epsilon). | Minimum: 0.000000 Default: 0.000000 | |
Activation Function | Choice | ANN_ACTIVATION | - | Available Choices: [0] Identity [1] Sigmoid [2] Gaussian Default: 1 | |
Function's Alpha | Floating point | ANN_ACT_ALPHA | - | Default: 1.000000 | |
Function's Beta | Floating point | ANN_ACT_BETA | - | Default: 1.000000 | |
Training Method | Choice | ANN_PROPAGATION | - | Available Choices: [0] resilient propagation [1] back propagation Default: 1 | |
Initial Update Value | Floating point | ANN_RP_DW0 | - | Default: 0.000000 | |
Increase Factor | Floating point | ANN_RP_DW_PLUS | - | Minimum: 1.010000 Default: 1.200000 | |
Decrease Factor | Floating point | ANN_RP_DW_MINUS | - | Minimum: 0.010000 Maximum: 0.990000 Default: 0.500000 | |
Lower Value Update Limit | Floating point | ANN_RP_DW_MIN | - | Minimum: 0.010000 Default: 0.100000 | |
Upper Value Update Limit | Floating point | ANN_RP_DW_MAX | - | Minimum: 1.010000 Default: 1.100000 | |
Weight Gradient Term | Floating point | ANN_BP_DW | - | Default: 0.100000 | |
Moment Term | Floating point | ANN_BP_MOMENT | - | Default: 0.100000 | |
(*) optional |
Command-line
Usage: saga_cmd imagery_opencv 11 [-FEATURES <str>] [-NORMALIZE <str>] [-CLASSES <str>] [-CLASSES_LUT <str>] [-MODEL_LOAD <str>] [-TRAIN_AREAS <str>] [-TRAIN_CLASS <str>] [-TRAIN_BUFFER <double>] [-MODEL_SAVE <str>] [-ANN_LAYERS <num>] [-ANN_NEURONS <num>] [-ANN_MAXITER <num>] [-ANN_EPSILON <double>] [-ANN_ACTIVATION <str>] [-ANN_ACT_ALPHA <double>] [-ANN_ACT_BETA <double>] [-ANN_PROPAGATION <str>] [-ANN_RP_DW0 <double>] [-ANN_RP_DW_PLUS <double>] [-ANN_RP_DW_MINUS <double>] [-ANN_RP_DW_MIN <double>] [-ANN_RP_DW_MAX <double>] [-ANN_BP_DW <double>] [-ANN_BP_MOMENT <double>] -FEATURES:<str> Features Grid list, input -NORMALIZE:<str> Normalize Boolean Default: 0 -CLASSES:<str> Classification Grid, output -CLASSES_LUT:<str> Look-up Table Table, output, optional -MODEL_LOAD:<str> Load Model File path -TRAIN_AREAS:<str> Training Areas Shapes, input -TRAIN_CLASS:<str> Class Identifier Table field -TRAIN_BUFFER:<double> Buffer Size Floating point Minimum: 0.000000 Default: 1.000000 -MODEL_SAVE:<str> Save Model File path -ANN_LAYERS:<num> Number of Layers Integer Minimum: 1 Default: 3 -ANN_NEURONS:<num> Number of Neurons Integer Minimum: 1 Default: 3 -ANN_MAXITER:<num> Maximum Number of Iterations Integer Minimum: 1 Default: 300 -ANN_EPSILON:<double> Error Change (Epsilon) Floating point Minimum: 0.000000 Default: 0.000000 -ANN_ACTIVATION:<str> Activation Function Choice Available Choices: [0] Identity [1] Sigmoid [2] Gaussian Default: 1 -ANN_ACT_ALPHA:<double> Function's Alpha Floating point Default: 1.000000 -ANN_ACT_BETA:<double> Function's Beta Floating point Default: 1.000000 -ANN_PROPAGATION:<str> Training Method Choice Available Choices: [0] resilient propagation [1] back propagation Default: 1 -ANN_RP_DW0:<double> Initial Update Value Floating point Default: 0.000000 -ANN_RP_DW_PLUS:<double> Increase Factor Floating point Minimum: 1.010000 Default: 1.200000 -ANN_RP_DW_MINUS:<double> Decrease Factor Floating point Minimum: 0.010000 Maximum: 0.990000 Default: 0.500000 -ANN_RP_DW_MIN:<double> Lower Value Update Limit Floating point Minimum: 0.010000 Default: 0.100000 -ANN_RP_DW_MAX:<double> Upper Value Update Limit Floating point Minimum: 1.010000 Default: 1.100000 -ANN_BP_DW:<double> Weight Gradient Term Floating point Default: 0.100000 -ANN_BP_MOMENT:<double> Moment Term Floating point Default: 0.100000