Tool ISODATA Clustering for Grids
This tool executes the Isodata unsupervised classification - clustering algorithm. Isodata stands for Iterative Self-Organizing Data Analysis Techniques. This is a more sophisticated algorithm which allows the number of clusters to be automatically adjusted during the iteration by merging similar clusters and splitting clusters with large standard deviations. The tool is based on Christos Iosifidis' Isodata implementation.
References
- isodata.c (Christos Iosifidis)
- A Fast Implementation of the ISODATA Clustering Algorithm
- Memarsadeghi, N., Mount, D. M., Netanyahu, N. S., Le Moigne, J. (2007): A Fast Implementation of the ISODATA Clustering Algorithm. International Journal of Computational Geometry and Applications, 17, 71-103. online.
- Author: O.Conrad (c) 2016
- Menu: Imagery|Classification|Unsupervised
Parameters
Name | Type | Identifier | Description | Constraints | |
---|---|---|---|---|---|
Input | Features | Grid list, input | FEATURES | - | - |
Output | Clusters | Grid, output | CLUSTER | - | - |
Statistics | Table, output | STATISTICS | - | - | |
Options | Grid System | Grid system | PARAMETERS_GRID_SYSTEM | - | - |
Normalize | Boolean | NORMALIZE | - | Default: 0 | |
Maximum Number of Iterations | Integer | ITERATIONS | - | Minimum: 3 Default: 20 | |
Initial Number of Clusters | Integer | CLUSTER_INI | - | Minimum: 0 Default: 5 | |
Maximum Number of Clusters | Integer | CLUSTER_MAX | - | Minimum: 3 Default: 16 | |
Minimum Number of Samples in a Cluster | Integer | SAMPLES_MIN | - | Minimum: 2 Default: 5 | |
Update Colors from Features | Boolean, GUI | RGB_COLORS | Use the first three features in list to obtain blue, green, red components for class colour in look-up table. | Default: 0 | |
Start Partition | Choice | INITIALIZE | - | Available Choices: [0] random [1] periodical [2] keep values Default: 0 |
Command-line
Usage: saga_cmd imagery_isocluster 0 [-FEATURES <str>] [-CLUSTER <str>] [-STATISTICS <str>] [-NORMALIZE <str>] [-ITERATIONS <num>] [-CLUSTER_INI <num>] [-CLUSTER_MAX <num>] [-SAMPLES_MIN <num>] [-INITIALIZE <str>] -FEATURES:<str> Features Grid list, input -CLUSTER:<str> Clusters Grid, output -STATISTICS:<str> Statistics Table, output -NORMALIZE:<str> Normalize Boolean Default: 0 -ITERATIONS:<num> Maximum Number of Iterations Integer Minimum: 3 Default: 20 -CLUSTER_INI:<num> Initial Number of Clusters Integer Minimum: 0 Default: 5 -CLUSTER_MAX:<num> Maximum Number of Clusters Integer Minimum: 3 Default: 16 -SAMPLES_MIN:<num> Minimum Number of Samples in a Cluster Integer Minimum: 2 Default: 5 -INITIALIZE:<str> Start Partition Choice Available Choices: [0] random [1] periodical [2] keep values Default: 0