SAGA-GIS Tool Library Documentation (v9.2.0)

Tool K-Nearest Neighbours Classification

Integration of the OpenCV Machine Learning library for K-Nearest Neighbours classification of gridded features.


References


Parameters

 NameTypeIdentifierDescriptionConstraints
InputFeaturesgrid list, inputFEATURES--
Training Samplestable, inputTRAIN_SAMPLESProvide a class identifier in the first field followed by sample data corresponding to the input feature grids.-
Training Areasshapes, inputTRAIN_AREAS--
OutputClassificationgrid, outputCLASSES--
Look-up Table (*)table, output, optionalCLASSES_LUTA reference list of the grid values that have been assigned to the training classes.-
OptionsNormalizebooleanNORMALIZE-Default: 0
Colors from Featuresboolean, GUIRGB_COLORSUse the first three features in list to obtain blue, green, red components for class colour in look-up table.Default: 0
Grid Systemgrid systemGRID_SYSTEM--
TrainingchoiceMODEL_TRAIN-Available Choices:
[0] training areas
[1] training samples
[2] load from file
Default: 0
Class Identifiertable fieldTRAIN_CLASS--
Buffer Sizefloating point numberTRAIN_BUFFERFor non-polygon type training areas, creates a buffer with a diameter of specified size.Minimum: 0.000000
Default: 1.000000
Load Modelfile pathMODEL_LOADUse a model previously stored to file.-
Save Modelfile pathMODEL_SAVEStores model to file to be used for subsequent classifications instead of training areas.-
Default Number of Neighboursinteger numberNEIGHBOURS-Minimum: 1
Default: 3
Training MethodchoiceTRAINING-Available Choices:
[0] classification
[1] regression model
Default: 0
Algorithm TypechoiceALGORITHM-Available Choices:
[0] brute force
[1] KD Tree
Default: 0
Parameter for KD Tree implementationinteger numberEMAX-Minimum: 1
Default: 1000
(*) optional

Command-line

Usage: saga_cmd imagery_opencv 6 [-FEATURES <str>] [-NORMALIZE <str>] [-CLASSES <str>] [-CLASSES_LUT <str>] [-MODEL_TRAIN <str>] [-TRAIN_SAMPLES <str>] [-TRAIN_AREAS <str>] [-TRAIN_CLASS <str>] [-TRAIN_BUFFER <double>] [-MODEL_LOAD <str>] [-MODEL_SAVE <str>] [-NEIGHBOURS <num>] [-TRAINING <str>] [-ALGORITHM <str>] [-EMAX <num>]
  -FEATURES:<str>       	Features
	grid list, input
  -NORMALIZE:<str>      	Normalize
	boolean
	Default: 0
  -CLASSES:<str>        	Classification
	grid, output
  -CLASSES_LUT:<str>    	Look-up Table
	table, output, optional
  -MODEL_TRAIN:<str>    	Training
	choice
	Available Choices:
	[0] training areas
	[1] training samples
	[2] load from file
	Default: 0
  -TRAIN_SAMPLES:<str>  	Training Samples
	table, input
  -TRAIN_AREAS:<str>    	Training Areas
	shapes, input
  -TRAIN_CLASS:<str>    	Class Identifier
	table field
  -TRAIN_BUFFER:<double>	Buffer Size
	floating point number
	Minimum: 0.000000
	Default: 1.000000
  -MODEL_LOAD:<str>     	Load Model
	file path
  -MODEL_SAVE:<str>     	Save Model
	file path
  -NEIGHBOURS:<num>     	Default Number of Neighbours
	integer number
	Minimum: 1
	Default: 3
  -TRAINING:<str>       	Training Method
	choice
	Available Choices:
	[0] classification
	[1] regression model
	Default: 0
  -ALGORITHM:<str>      	Algorithm Type
	choice
	Available Choices:
	[0] brute force
	[1] KD Tree
	Default: 0
  -EMAX:<num>           	Parameter for KD Tree implementation
	integer number
	Minimum: 1
	Default: 1000