Tool Cluster Analysis for Point Clouds
Cluster analysis for point clouds.
This tool is a port of the 'Cluster Analysis for Grids' tool from the 'Imagery - Classification' tool library.
References
- Forgy, E. (1965): Cluster Analysis of multivariate data: efficiency vs. interpretability of classifications. Biometrics 21:768.
- Rubin, J. (1967): Optimal Classification into Groups: An Approach for Solving the Taxonomy Problem. J. Theoretical Biology, 15:103-144.
- Author: Volker Wichmann (c) 2010, LASERDATA GmbH
- Menu: Shapes|Point Clouds|Classification
Parameters
| Name | Type | Identifier | Description | Constraints |
Input | Point Cloud | point cloud, input | PC_IN | Input | - |
Output | Result (*) | point cloud, output, optional | PC_OUT | Output | - |
Statistics | table, output | STATISTICS | - | - |
Options | Attributes | table fields | FIELDS | The attribute fields to cluster | - |
Method | choice | METHOD | - | Available Choices: [0] Iterative Minimum Distance (Forgy 1965) [1] Hill-Climbing (Rubin 1967) [2] Combined Minimum Distance / Hillclimbing Default: 1 |
Clusters | integer number | NCLUSTER | Number of clusters | Minimum: 2 Default: 10 |
Normalise | boolean | NORMALISE | Automatically normalise attributes by standard deviation before clustering. | Default: 1 |
(*) optional |
Command-line
Usage: saga_cmd pointcloud_tools 11 [-PC_IN <str>] [-FIELDS <str>] [-PC_OUT <str>] [-STATISTICS <str>] [-METHOD <str>] [-NCLUSTER <num>] [-NORMALISE <str>]
-PC_IN:<str> Point Cloud
point cloud, input
-FIELDS:<str> Attributes
table fields
-PC_OUT:<str> Result
point cloud, output, optional
-STATISTICS:<str> Statistics
table, output
-METHOD:<str> Method
choice
Available Choices:
[0] Iterative Minimum Distance (Forgy 1965)
[1] Hill-Climbing (Rubin 1967)
[2] Combined Minimum Distance / Hillclimbing
Default: 1
-NCLUSTER:<num> Clusters
integer number
Minimum: 2
Default: 10
-NORMALISE:<str> Normalise
boolean
Default: 1