Seeded Region Growing
- Author: B. Bechtel, O. Conrad (c) 2008
- Menu: Imagery | Segmentation
Description
The tool allows one to apply a seeded region growing algorithm to a stack of input features and thus to segmentize the data for object extraction. The required seed points can be created with the 'Seed Generation' tool, for example. The derived segments can be used, for example, for object based classification.
References
- Adams, R. & Bischof, L. (1994): Seeded Region Growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.16, No.6, p.641-647. online.
- Bechtel, B., Ringeler, A. & Boehner, J. (2008): Segmentation for Object Extraction of Trees using MATLAB and SAGA. In: Boehner, J., Blaschke, T., Montanarella, L. [Eds.]: SAGA - Seconds Out. Hamburger Beitraege zur Physischen Geographie und Landschaftsoekologie, 19:59-70. online.
Parameters
Name | Type | Identifier | Description | Constraints | |
---|---|---|---|---|---|
Input | Seeds | grid, input | SEEDS | - | - |
Features | grid list, input | FEATURES | - | - | |
Output | Segments | grid, output | SEGMENTS | - | - |
Similarity | grid, output | SIMILARITY | - | - | |
Seeds | table, output | TABLE | - | - | |
Options | Grid System | grid system | PARAMETERS_GRID_SYSTEM | - | - |
Normalize Features | boolean | NORMALIZE | Standardize the input features, i.e. rescale the input data (features) such that the mean equals 0 and the standard deviation equals 1. This is helpful when the input features have different scales, units or outliers. | Default: 0 | |
Neighbourhood | choice | NEIGHBOUR | - | Available Choices: [0] 4 (von Neumann) [1] 8 (Moore) Default: 0 | |
Method | choice | METHOD | - | Available Choices: [0] feature space and position [1] feature space Default: 0 | |
Variance in Feature Space | floating point number | SIG_1 | - | Minimum: 0.000000 Default: 1.000000 | |
Variance in Position Space | floating point number | SIG_2 | - | Minimum: 0.000000 Default: 1.000000 | |
Similarity Threshold | floating point number | THRESHOLD | - | Minimum: 0.000000 Default: 0.000000 | |
Refresh | boolean | REFRESH | - | Default: 0 | |
Leaf Size (for Speed Optimisation) | integer number | LEAFSIZE | - | Minimum: 2 Default: 256 |
Command Line
Usage: saga_cmd imagery_segmentation 3 [-SEEDS] [-FEATURES ] [-SEGMENTS ] [-SIMILARITY ] [-TABLE ] [-NORMALIZE ] [-NEIGHBOUR ] [-METHOD ] [-SIG_1 ] [-SIG_2 ] [-THRESHOLD ] [-REFRESH ] [-LEAFSIZE ] -SEEDS: Seeds grid, input -FEATURES: Features grid list, input -SEGMENTS: Segments grid, output -SIMILARITY: Similarity grid, output -TABLE: Seeds table, output -NORMALIZE: Normalize Features boolean Default: 0 -NEIGHBOUR: Neighbourhood choice Available Choices: [0] 4 (von Neumann) [1] 8 (Moore) Default: 0 -METHOD: Method choice Available Choices: [0] feature space and position [1] feature space Default: 0 -SIG_1: Variance in Feature Space floating point number Minimum: 0.000000 Default: 1.000000 -SIG_2: Variance in Position Space floating point number Minimum: 0.000000 Default: 1.000000 -THRESHOLD: Similarity Threshold floating point number Minimum: 0.000000 Default: 0.000000 -REFRESH: Refresh boolean Default: 0 -LEAFSIZE: Leaf Size (for Speed Optimisation) integer number Minimum: 2 Default: 256