SAGA 9.3.0 | Tool Library Documentation

SVM Classification


Description

Support Vector Machine (SVM) based classification for grids.


References


Parameters

 NameTypeIdentifierDescriptionConstraints
InputGridsgrid list, inputGRIDS--
Training Areasshapes, inputROI--
OutputClassificationgrid, outputCLASSES--
Look-up Tabletable, output, optionalCLASSES_LUTA reference list of the grid values that have been assigned to the training classes.-
OptionsGrid Systemgrid systemPARAMETERS_GRID_SYSTEM--
ScalingchoiceSCALING-Available Choices: [0] none [1] normalize (0-1) [2] standardize Default: 2
Verbose MessagesbooleanMESSAGE-Default: 0
Model SourcechoiceMODEL_SRC-Available Choices: [0] create from training areas [1] restore from file Default: 0
Restore Model from Filefile pathMODEL_LOAD--
Class Identifiertable fieldROI_ID--
Store Model to Filefile pathMODEL_SAVE--
SVM TypechoiceSVM_TYPE-Available Choices: [0] C-SVC [1] nu-SVC [2] one-class SVM [3] epsilon-SVR [4] nu-SVR Default: 0
Kernel TypechoiceKERNEL_TYPElinear: u'*v polynomial: (gamma*u'*v + coef0)^degree radial basis function: exp(-gamma*|u-v|^2) sigmoid: tanh(gamma*u'*v + coef0)Available Choices: [0] linear [1] polynomial [2] radial basis function [3] sigmoid Default: 2
Degreeinteger numberDEGREEdegree in kernel functionDefault: 3
Gammafloating point numberGAMMAgamma in kernel functionDefault: 0.000000
coef0floating point numberCOEF0coef0 in kernel functionDefault: 0.000000
Cfloating point numberCOSTparameter C (cost) of C-SVC, epsilon-SVR, and nu-SVRDefault: 1.000000
nu-SVRfloating point numberNUparameter nu of nu-SVC, one-class SVM, and nu-SVRDefault: 0.500000
SVR Epsilonfloating point numberEPS_SVRepsilon in loss function of epsilon-SVRDefault: 0.100000
Cache Sizefloating point numberCACHE_SIZEcache memory size in MBDefault: 100.000000
Epsilonfloating point numberEPStolerance of termination criterionDefault: 0.001000
ShrinkingbooleanSHRINKINGwhether to use the shrinking heuristicsDefault: 0
Probability EstimatesbooleanPROBABILITYwhether to train a SVC or SVR model for probability estimatesDefault: 0
Cross Validationinteger numberCROSSVALn-fold cross validation: n must > 1Minimum: 1 Default: 1

Command Line


Usage: saga_cmd imagery_svm 0 [-GRIDS ] [-CLASSES ] [-CLASSES_LUT ] [-SCALING ] [-MESSAGE ] [-MODEL_SRC ] [-MODEL_LOAD ] [-ROI ] [-ROI_ID ] [-MODEL_SAVE ] [-SVM_TYPE ] [-KERNEL_TYPE ] [-DEGREE ] [-GAMMA ] [-COEF0 ] [-COST ] [-NU ] [-EPS_SVR ] [-CACHE_SIZE ] [-EPS ] [-SHRINKING ] [-PROBABILITY ] [-CROSSVAL ]
  -GRIDS:        	Grids
	grid list, input
  -CLASSES:      	Classification
	grid, output
  -CLASSES_LUT:  	Look-up Table
	table, output, optional
  -SCALING:      	Scaling
	choice
	Available Choices:
	[0] none
	[1] normalize (0-1)
	[2] standardize
	Default: 2
  -MESSAGE:      	Verbose Messages
	boolean
	Default: 0
  -MODEL_SRC:    	Model Source
	choice
	Available Choices:
	[0] create from training areas
	[1] restore from file
	Default: 0
  -MODEL_LOAD:   	Restore Model from File
	file path
  -ROI:          	Training Areas
	shapes, input
  -ROI_ID:       	Class Identifier
	table field
  -MODEL_SAVE:   	Store Model to File
	file path
  -SVM_TYPE:     	SVM Type
	choice
	Available Choices:
	[0] C-SVC
	[1] nu-SVC
	[2] one-class SVM
	[3] epsilon-SVR
	[4] nu-SVR
	Default: 0
  -KERNEL_TYPE:  	Kernel Type
	choice
	Available Choices:
	[0] linear
	[1] polynomial
	[2] radial basis function
	[3] sigmoid
	Default: 2
  -DEGREE:       	Degree
	integer number
	Default: 3
  -GAMMA:     	Gamma
	floating point number
	Default: 0.000000
  -COEF0:     	coef0
	floating point number
	Default: 0.000000
  -COST:      	C
	floating point number
	Default: 1.000000
  -NU:        	nu-SVR
	floating point number
	Default: 0.500000
  -EPS_SVR:   	SVR Epsilon
	floating point number
	Default: 0.100000
  -CACHE_SIZE:	Cache Size
	floating point number
	Default: 100.000000
  -EPS:       	Epsilon
	floating point number
	Default: 0.001000
  -SHRINKING:    	Shrinking
	boolean
	Default: 0
  -PROBABILITY:  	Probability Estimates
	boolean
	Default: 0
  -CROSSVAL:     	Cross Validation
	integer number
	Minimum: 1
	Default: 1