GWR for Multiple Predictors (Shapes)
- Author: O.Conrad (c) 2010
- Menu: Spatial and Geostatistics | Geographically Weighted Regression
Description
Geographically Weighted Regression for multiple predictors. Regression details are stored in a copy of the input data set. If the input data set is not a point data set, the feature centroids are used as spatial reference.
References
- Fotheringham, S.A., Brunsdon, C., Charlton, M. (2002): Geographically Weighted Regression: the analysis of spatially varying relationships. John Wiley & Sons. online.
- Fotheringham, S.A., Charlton, M., Brunsdon, C. (1998): Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environment and Planning A 30(11), 1905___1927. online.
- Lloyd, C. (2010): Spatial Data Analysis - An Introduction for GIS Users. Oxford, 206p.
- Zhang, D., Ren, N., and Hou, X. (2018): An improved logistic regression model based on a spatially weighted technique (ILRBSWT v1.0) and its application to mineral prospectivity mapping. Geosci. Model Dev., 11, 2525-2539. doi:10.5194/gmd-11-2525-2018.
Parameters
Name | Type | Identifier | Description | Constraints | |
---|---|---|---|---|---|
Input | Shapes | shapes, input | POINTS | - | - |
Output | Regression | shapes, output | REGRESSION | - | - |
Options | Dependent Variable | table field | DEPENDENT | - | - |
Predictors | table fields | PREDICTORS | - | - | |
Logistic Regression | boolean | LOGISTIC | - | Default: 0 | |
Weighting Function | choice | DW_WEIGHTING | - | Available Choices: [0] no distance weighting [1] inverse distance to a power [2] exponential [3] gaussian Default: 0 | |
Power | floating point number | DW_IDW_POWER | - | Minimum: 0.000000 Default: 2.000000 | |
Bandwidth | floating point number | DW_BANDWIDTH | Bandwidth for exponential and Gaussian weighting | Minimum: 0.000000 Default: 1.000000 | |
Search Range | choice | SEARCH_RANGE | - | Available Choices: [0] local [1] global Default: 1 | |
Maximum Search Distance | floating point number | SEARCH_RADIUS | local maximum search distance given in map units | Minimum: 0.000000 Default: 1000.000000 | |
Number of Points | choice | SEARCH_POINTS_ALL | - | Available Choices: [0] maximum number of nearest points [1] all points within search distance Default: 1 | |
Minimum | integer number | SEARCH_POINTS_MIN | minimum number of points to use | Minimum: 1 Default: 16 | |
Maximum | integer number | SEARCH_POINTS_MAX | maximum number of nearest points | Minimum: 1 Default: 20 |
Command Line
Usage: saga_cmd statistics_regression 7 [-POINTS] [-DEPENDENT ] [-PREDICTORS ] [-REGRESSION ] [-LOGISTIC ] [-DW_WEIGHTING ] [-DW_IDW_POWER ] [-DW_BANDWIDTH ] [-SEARCH_RANGE ] [-SEARCH_RADIUS ] [-SEARCH_POINTS_ALL ] [-SEARCH_POINTS_MIN ] [-SEARCH_POINTS_MAX ] -POINTS: Shapes shapes, input -DEPENDENT: Dependent Variable table field -PREDICTORS: Predictors table fields -REGRESSION: Regression shapes, output -LOGISTIC: Logistic Regression boolean Default: 0 -DW_WEIGHTING: Weighting Function choice Available Choices: [0] no distance weighting [1] inverse distance to a power [2] exponential [3] gaussian Default: 0 -DW_IDW_POWER: Power floating point number Minimum: 0.000000 Default: 2.000000 -DW_BANDWIDTH: Bandwidth floating point number Minimum: 0.000000 Default: 1.000000 -SEARCH_RANGE: Search Range choice Available Choices: [0] local [1] global Default: 1 -SEARCH_RADIUS: Maximum Search Distance floating point number Minimum: 0.000000 Default: 1000.000000 -SEARCH_POINTS_ALL: Number of Points choice Available Choices: [0] maximum number of nearest points [1] all points within search distance Default: 1 -SEARCH_POINTS_MIN: Minimum integer number Minimum: 1 Default: 16 -SEARCH_POINTS_MAX: Maximum integer number Minimum: 1 Default: 20