ISODATA Clustering for Grids
- Author: O.Conrad (c) 2016
- Menu: Imagery | Classification | Unsupervised
Description
This tool executes the Isodata unsupervised classification - clustering algorithm. Isodata stands for Iterative Self-Organizing Data Analysis Techniques. This is a more sophisticated algorithm which allows the number of clusters to be automatically adjusted during the iteration by merging similar clusters and splitting clusters with large standard deviations. The tool is based on Christos Iosifidis' Isodata implementation. 
References
Parameters
|  | Name | Type | Identifier | Description | Constraints | 
|---|
| Input | Features | grid list, input | FEATURES | - | - | 
| Output | Clusters | grid, output | CLUSTER | - | - | 
| Statistics | table, output | STATISTICS | - | - | 
| Options | Grid System | grid system | PARAMETERS_GRID_SYSTEM | - | - | 
| Normalize | boolean | NORMALIZE | - | Default: 0 | 
| Maximum Number of Iterations | integer number | ITERATIONS | - | Minimum: 3
Default: 20 | 
| Initial Number of Clusters | integer number | CLUSTER_INI | - | Minimum: 0
Default: 5 | 
| Maximum Number of Clusters | integer number | CLUSTER_MAX | - | Minimum: 3
Default: 16 | 
| Minimum Number of Samples in a Cluster | integer number | SAMPLES_MIN | - | Minimum: 2
Default: 5 | 
| Update Colors from Features | boolean, GUI | RGB_COLORS | Use the first three features in list to obtain blue, green, red components for class colour in look-up table. | Default: 0 | 
| Start Partition | choice | INITIALIZE | - | Available Choices:
[0] random
[1] periodical
[2] keep values
Default: 0 | 
Command Line
Usage: saga_cmd imagery_isocluster 0 [-FEATURES ] [-CLUSTER ] [-STATISTICS ] [-NORMALIZE ] [-ITERATIONS ] [-CLUSTER_INI ] [-CLUSTER_MAX ] [-SAMPLES_MIN ] [-INITIALIZE ]
  -FEATURES:   	Features
	grid list, input
  -CLUSTER:    	Clusters
	grid, output
  -STATISTICS: 	Statistics
	table, output
  -NORMALIZE:  	Normalize
	boolean
	Default: 0
  -ITERATIONS: 	Maximum Number of Iterations
	integer number
	Minimum: 3
	Default: 20
  -CLUSTER_INI:	Initial Number of Clusters
	integer number
	Minimum: 0
	Default: 5
  -CLUSTER_MAX:	Maximum Number of Clusters
	integer number
	Minimum: 3
	Default: 16
  -SAMPLES_MIN:	Minimum Number of Samples in a Cluster
	integer number
	Minimum: 2
	Default: 5
  -INITIALIZE: 	Start Partition
	choice
	Available Choices:
	[0] random
	[1] periodical
	[2] keep values
	Default: 0