Artificial Neural Network Classification
- Author: O.Conrad (c) 2016, L.Piras (c) 2013
- Menu: Imagery | Classification | Machine Learning
Description
Integration of the OpenCV Machine Learning library for Artificial Neural Network classification of gridded features.
References
Parameters
Name | Type | Identifier | Description | Constraints | |
---|---|---|---|---|---|
Input | Features | grid list, input | FEATURES | - | - |
Training Samples | table, input | TRAIN_SAMPLES | Provide a class identifier in the first field followed by sample data corresponding to the input feature grids. | - | |
Training Areas | shapes, input | TRAIN_AREAS | - | - | |
Output | Classification | grid, output | CLASSES | - | - |
Look-up Table | table, output, optional | CLASSES_LUT | A reference list of the grid values that have been assigned to the training classes. | - | |
Options | Normalize | boolean | NORMALIZE | - | Default: 0 |
Colors from Features | boolean, GUI | RGB_COLORS | Use the first three features in list to obtain blue, green, red components for class colour in look-up table. | Default: 0 | |
Grid System | grid system | GRID_SYSTEM | - | - | |
Training | choice | MODEL_TRAIN | - | Available Choices: [0] training areas [1] training samples [2] load from file Default: 0 | |
Class Identifier | table field | TRAIN_CLASS | - | - | |
Buffer Size | floating point number | TRAIN_BUFFER | For non-polygon type training areas, creates a buffer with a diameter of specified size. | Minimum: 0.000000 Default: 1.000000 | |
Load Model | file path | MODEL_LOAD | Use a model previously stored to file. | - | |
Save Model | file path | MODEL_SAVE | Stores model to file to be used for subsequent classifications instead of training areas. | - | |
Number of Layers | integer number | ANN_LAYERS | You can specify the number of layers in the network (not including input and output layer). | Minimum: 1 Default: 3 | |
Number of Neurons | integer number | ANN_NEURONS | You can specify the number of neurons in each layer of the network. | Minimum: 1 Default: 5 | |
Maximum Number of Iterations | integer number | ANN_MAXITER | - | Minimum: 1 Default: 300 | |
Error Change (Epsilon) | floating point number | ANN_EPSILON | Termination criteria of the training algorithm. You can specify how much the error could change between the iterations to make the algorithm continue (epsilon). | Minimum: 0.000000 Default: 0.000000 | |
Activation Function | choice | ANN_ACTIVATION | - | Available Choices: [0] Identity [1] Sigmoid [2] Gaussian Default: 1 | |
Function's Alpha | floating point number | ANN_ACT_ALPHA | - | Default: 1.000000 | |
Function's Beta | floating point number | ANN_ACT_BETA | - | Default: 1.000000 | |
Training Method | choice | ANN_PROPAGATION | - | Available Choices: [0] resilient propagation [1] back propagation Default: 1 | |
Initial Update Value | floating point number | ANN_RP_DW0 | - | Default: 0.000000 | |
Increase Factor | floating point number | ANN_RP_DW_PLUS | - | Minimum: 1.010000 Default: 1.200000 | |
Decrease Factor | floating point number | ANN_RP_DW_MINUS | - | Minimum: 0.010000 Maximum: 0.990000 Default: 0.500000 | |
Lower Value Update Limit | floating point number | ANN_RP_DW_MIN | - | Minimum: 0.010000 Default: 0.100000 | |
Upper Value Update Limit | floating point number | ANN_RP_DW_MAX | - | Minimum: 1.010000 Default: 1.100000 | |
Weight Gradient Term | floating point number | ANN_BP_DW | - | Default: 0.100000 | |
Moment Term | floating point number | ANN_BP_MOMENT | - | Default: 0.100000 |
Command Line
Usage: saga_cmd imagery_opencv 11 [-FEATURES] [-NORMALIZE ] [-CLASSES ] [-CLASSES_LUT ] [-MODEL_TRAIN ] [-TRAIN_SAMPLES ] [-TRAIN_AREAS ] [-TRAIN_CLASS ] [-TRAIN_BUFFER ] [-MODEL_LOAD ] [-MODEL_SAVE ] [-ANN_LAYERS ] [-ANN_NEURONS ] [-ANN_MAXITER ] [-ANN_EPSILON ] [-ANN_ACTIVATION ] [-ANN_ACT_ALPHA ] [-ANN_ACT_BETA ] [-ANN_PROPAGATION ] [-ANN_RP_DW0 ] [-ANN_RP_DW_PLUS ] [-ANN_RP_DW_MINUS ] [-ANN_RP_DW_MIN ] [-ANN_RP_DW_MAX ] [-ANN_BP_DW ] [-ANN_BP_MOMENT ] -FEATURES: Features grid list, input -NORMALIZE: Normalize boolean Default: 0 -CLASSES: Classification grid, output -CLASSES_LUT: Look-up Table table, output, optional -MODEL_TRAIN: Training choice Available Choices: [0] training areas [1] training samples [2] load from file Default: 0 -TRAIN_SAMPLES: Training Samples table, input -TRAIN_AREAS: Training Areas shapes, input -TRAIN_CLASS: Class Identifier table field -TRAIN_BUFFER: Buffer Size floating point number Minimum: 0.000000 Default: 1.000000 -MODEL_LOAD: Load Model file path -MODEL_SAVE: Save Model file path -ANN_LAYERS: Number of Layers integer number Minimum: 1 Default: 3 -ANN_NEURONS: Number of Neurons integer number Minimum: 1 Default: 5 -ANN_MAXITER: Maximum Number of Iterations integer number Minimum: 1 Default: 300 -ANN_EPSILON: Error Change (Epsilon) floating point number Minimum: 0.000000 Default: 0.000000 -ANN_ACTIVATION: Activation Function choice Available Choices: [0] Identity [1] Sigmoid [2] Gaussian Default: 1 -ANN_ACT_ALPHA: Function's Alpha floating point number Default: 1.000000 -ANN_ACT_BETA: Function's Beta floating point number Default: 1.000000 -ANN_PROPAGATION: Training Method choice Available Choices: [0] resilient propagation [1] back propagation Default: 1 -ANN_RP_DW0: Initial Update Value floating point number Default: 0.000000 -ANN_RP_DW_PLUS: Increase Factor floating point number Minimum: 1.010000 Default: 1.200000 -ANN_RP_DW_MINUS: Decrease Factor floating point number Minimum: 0.010000 Maximum: 0.990000 Default: 0.500000 -ANN_RP_DW_MIN: Lower Value Update Limit floating point number Minimum: 0.010000 Default: 0.100000 -ANN_RP_DW_MAX: Upper Value Update Limit floating point number Minimum: 1.010000 Default: 1.100000 -ANN_BP_DW: Weight Gradient Term floating point number Default: 0.100000 -ANN_BP_MOMENT: Moment Term floating point number Default: 0.100000