Supervised Majority Choice Image Classification
- Author: O. Conrad (c) 2023
- Menu: Imagery | Classification
Description
The majority choice tool for supervised image classification runs the selected classification tools using standard settings and takes for each pixel of the resulting classification the class that has been identified most often by the individual classifiers. Random Forest is not selected by default because it generates randomized results with more or less strong differences each time it is run. K-Nearest Neighbours and Artifical Neural Network have been excluded from default, because using them might be a bit more time consuming.
Parameters
Name | Type | Identifier | Description | Constraints | |
---|---|---|---|---|---|
Input | Features | grid list, input | FEATURES | - | - |
Training Areas | shapes, input | TRAIN_AREAS | - | - | |
Training Samples | table, input | TRAIN_SAMPLES | - | - | |
Output | Majority Choice | grid, output | CLASSES | - | - |
Majority Count | grid, output, optional | MAJORITY_COUNT | - | - | |
Classes Count | grid, output, optional | NUNIQUES | - | - | |
Options | Normalize | boolean | NORMALIZE | - | Default: 0 |
Training | choice | MODEL_TRAIN | - | Available Choices: [0] training areas [1] training samples Default: 0 | |
Class Identifier | table field | TRAIN_CLASS | - | - | |
Buffer Size | floating point number | TRAIN_BUFFER | For non-polygon type training areas, creates a buffer with a diameter of specified size. | Minimum: 0.000000 Default: 30.000000 | |
Grid System | grid system | GRID_SYSTEM | - | - | |
Unambiguous | boolean | UNAMBIGUOUS | Do not classify a pixel if more than one class reaches the same majority count for it. | Default: 0 | |
Parallel Epiped | boolean | CLASSIFY_BOX | - | Default: 1 | |
Minimum Distance | boolean | CLASSIFY_MINDIST | - | Default: 1 | |
Mahalonobis Distance | boolean | CLASSIFY_MAHALONOBIS | - | Default: 1 | |
Maximum Likelihood | boolean | CLASSIFY_MAXLIKE | - | Default: 1 | |
Spectral Angle Mapping | boolean | CLASSIFY_SAM | - | Default: 1 | |
Normal Bayes | boolean | CLASSIFY_BAYES | - | Default: 1 | |
Decision Tree | boolean | CLASSIFY_DT | - | Default: 1 | |
Random Forest | boolean | CLASSIFY_RF | - | Default: 0 | |
Support Vector Machine | boolean | CLASSIFY_SVM | - | Default: 1 | |
K-Nearest Neighbours | boolean | CLASSIFY_KNN | - | Default: 0 | |
Artificial Neural Network | boolean | CLASSIFY_ANN | - | Default: 0 |
Command Line
Usage: saga_cmd imagery_classification classify_majority [-FEATURES] [-NORMALIZE ] [-MODEL_TRAIN ] [-TRAIN_AREAS ] [-TRAIN_CLASS ] [-TRAIN_BUFFER ] [-TRAIN_SAMPLES ] [-CLASSES ] [-MAJORITY_COUNT ] [-NUNIQUES ] [-UNAMBIGUOUS ] [-CLASSIFY_BOX ] [-CLASSIFY_MINDIST ] [-CLASSIFY_MAHALONOBIS ] [-CLASSIFY_MAXLIKE ] [-CLASSIFY_SAM ] [-CLASSIFY_BAYES ] [-CLASSIFY_DT ] [-CLASSIFY_RF ] [-CLASSIFY_SVM ] [-CLASSIFY_KNN ] [-CLASSIFY_ANN ] -FEATURES: Features grid list, input -NORMALIZE: Normalize boolean Default: 0 -MODEL_TRAIN: Training choice Available Choices: [0] training areas [1] training samples Default: 0 -TRAIN_AREAS: Training Areas shapes, input -TRAIN_CLASS: Class Identifier table field -TRAIN_BUFFER: Buffer Size floating point number Minimum: 0.000000 Default: 30.000000 -TRAIN_SAMPLES: Training Samples table, input -CLASSES: Majority Choice grid, output -MAJORITY_COUNT: Majority Count grid, output, optional -NUNIQUES: Classes Count grid, output, optional -UNAMBIGUOUS: Unambiguous boolean Default: 0 -CLASSIFY_BOX: Parallel Epiped boolean Default: 1 -CLASSIFY_MINDIST: Minimum Distance boolean Default: 1 -CLASSIFY_MAHALONOBIS: Mahalonobis Distance boolean Default: 1 -CLASSIFY_MAXLIKE: Maximum Likelihood boolean Default: 1 -CLASSIFY_SAM: Spectral Angle Mapping boolean Default: 1 -CLASSIFY_BAYES: Normal Bayes boolean Default: 1 -CLASSIFY_DT: Decision Tree boolean Default: 1 -CLASSIFY_RF: Random Forest boolean Default: 0 -CLASSIFY_SVM: Support Vector Machine boolean Default: 1 -CLASSIFY_KNN: K-Nearest Neighbours boolean Default: 0 -CLASSIFY_ANN: Artificial Neural Network boolean Default: 0