K-Means Clustering for Grids
- Author: O.Conrad (c) 2001
- Menu: Imagery | Classification | Unsupervised
Description
This tool implements the K-Means cluster analysis for grids in two variants, iterative minimum distance (Forgy 1965) and hill climbing (Rubin 1967). 
References
- Forgy, E. (1965): Cluster analysis of multivariate data: efficiency vs. interpretability of classifications. Biometrics 21:768.
- Rubin, J. (1967): Optimal classification into groups: an approach for solving the taxonomy problem. J. Theoretical Biology, 15:103-144.
Parameters
|  | Name | Type | Identifier | Description | Constraints | 
|---|
| Input | Grids | grid list, input | GRIDS | - | - | 
| Output | Clusters | grid, output | CLUSTER | - | - | 
| Statistics | table, output | STATISTICS | - | - | 
| Options | Grid System | grid system | PARAMETERS_GRID_SYSTEM | - | - | 
| Method | choice | METHOD | - | Available Choices:
[0] Iterative Minimum Distance (Forgy 1965)
[1] Hill-Climbing (Rubin 1967)
[2] Combined Minimum Distance / Hillclimbing
Default: 1 | 
| Clusters | integer number | NCLUSTER | Number of clusters | Minimum: 2
Default: 10 | 
| Maximum Iterations | integer number | MAXITER | Maximum number of iterations, ignored if set to zero. | Minimum: 0
Default: 10 | 
| Normalise | boolean | NORMALISE | Automatically normalise grids by standard deviation before clustering. | Default: 0 | 
| Update Colors from Features | boolean
[GUI] | RGB_COLORS | Use the first three features in list to obtain blue, green, red components for class colour in look-up table. | Default: 0 | 
| Start Partition | choice | INITIALIZE | - | Available Choices:
[0] random
[1] periodical
[2] keep values
Default: 0 | 
| Old Version | boolean | OLDVERSION | slower but memory saving | Default: 0 | 
| Update View | boolean
[GUI] | UPDATEVIEW | - | Default: 1 | 
Command Line
Usage: saga_cmd imagery_classification 1 [-GRIDS ] [-CLUSTER ] [-STATISTICS ] [-METHOD ] [-NCLUSTER ] [-MAXITER ] [-NORMALISE ] [-INITIALIZE ] [-OLDVERSION ]
  -GRIDS:     	Grids
	grid list, input
  -CLUSTER:   	Clusters
	grid, output
  -STATISTICS:	Statistics
	table, output
  -METHOD:    	Method
	choice
	Available Choices:
	[0] Iterative Minimum Distance (Forgy 1965)
	[1] Hill-Climbing (Rubin 1967)
	[2] Combined Minimum Distance / Hillclimbing
	Default: 1
  -NCLUSTER:  	Clusters
	integer number
	Minimum: 2
	Default: 10
  -MAXITER:   	Maximum Iterations
	integer number
	Minimum: 0
	Default: 10
  -NORMALISE: 	Normalise
	boolean
	Default: 0
  -INITIALIZE:	Start Partition
	choice
	Available Choices:
	[0] random
	[1] periodical
	[2] keep values
	Default: 0
  -OLDVERSION:	Old Version
	boolean
	Default: 0