Superpixel Segmentation
- Author: O.Conrad (c) 2019
- Menu: Imagery | Segmentation
Description
The Superpixel Segmentation tool implements the 'Simple Linear Iterative Clustering' (SLIC) algorithm, an image segmentation method described in Achanta et al. (2010). 
SLIC is a simple and efficient method to decompose an image in visually homogeneous regions. It is based on a spatially localized version of k-means clustering. Similar to mean shift or quick shift, each pixel is associated to a feature vector. 
This tool is follows the SLIC implementation created by Vedaldi and Fulkerson as part of the VLFeat library. 
References
- SLIC at VLFeat.org
- Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & S__sstrunk, S. (2010): Slic Superpixels. EPFL Technical Report no. 149300, June 2010. epfl.ch.
- Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & S__sstrunk, S. (2012): SLIC Superpixels compared to state-of-the-art superpixel methods. IEEE transactions on pattern analysis and machine intelligence, 34(11), 2274-2282. ieee.org.
Parameters
|  | Name | Type | Identifier | Description | Constraints | 
|---|
| Input | Features | grid list, input | FEATURES | - | - | 
| Output | Segments | shapes, output | POLYGONS | - | - | 
| Superpixels | grid list, output, optional | SUPERPIXELS | - | - | 
| Options | Grid System | grid system | PARAMETERS_GRID_SYSTEM | - | - | 
| Normalize | boolean | NORMALIZE | - | Default: 0 | 
| Maximum Iterations | integer number | MAX_ITERATIONS | - | Minimum: 1
Default: 100 | 
| Regularization | floating point number | REGULARIZATION | - | Minimum: 0.000000
Default: 1.000000 | 
| Region Size | integer number | SIZE | Starting 'cell size' of the superpixels given as number of cells. | Minimum: 1
Default: 10 | 
| Minimum Region Size | integer number | SIZE_MIN | In postprocessing join segments, which cover less cells than specified here, to a larger neighbour segment. | Minimum: 1
Default: 1 | 
| Create Superpixel Grids | boolean | SUPERPIXELS_DO | - | Default: 0 | 
| Post-Processing | choice | POSTPROCESSING | - | Available Choices:
[0] none
[1] unsupervised classification
Default: 0 | 
| Number of Clusters | integer number | NCLUSTER | - | Minimum: 2
Default: 12 | 
| Split Clusters | boolean | SPLIT_CLUSTERS | - | Default: 1 | 
Command Line
Usage: saga_cmd imagery_segmentation 4 [-FEATURES ] [-NORMALIZE ] [-POLYGONS ] [-MAX_ITERATIONS ] [-REGULARIZATION ] [-SIZE ] [-SIZE_MIN ] [-SUPERPIXELS_DO ] [-SUPERPIXELS ] [-POSTPROCESSING ] [-NCLUSTER ] [-SPLIT_CLUSTERS ]
  -FEATURES:         	Features
	grid list, input
  -NORMALIZE:        	Normalize
	boolean
	Default: 0
  -POLYGONS:         	Segments
	shapes, output
  -MAX_ITERATIONS:   	Maximum Iterations
	integer number
	Minimum: 1
	Default: 100
  -REGULARIZATION:	Regularization
	floating point number
	Minimum: 0.000000
	Default: 1.000000
  -SIZE:             	Region Size
	integer number
	Minimum: 1
	Default: 10
  -SIZE_MIN:         	Minimum Region Size
	integer number
	Minimum: 1
	Default: 1
  -SUPERPIXELS_DO:   	Create Superpixel Grids
	boolean
	Default: 0
  -SUPERPIXELS:      	Superpixels
	grid list, output, optional
  -POSTPROCESSING:   	Post-Processing
	choice
	Available Choices:
	[0] none
	[1] unsupervised classification
	Default: 0
  -NCLUSTER:         	Number of Clusters
	integer number
	Minimum: 2
	Default: 12
  -SPLIT_CLUSTERS:   	Split Clusters
	boolean
	Default: 1