Minimum Redundancy Feature Selection
- Author: O.Conrad (c) 2014
- Menu: Table | Calculus
Description
Identify the most relevant features for subsequent classification of tabular data.
The minimum Redundancy Maximum Relevance (mRMR) feature selection algorithm has been developed by Hanchuan Peng .
References:
Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. Hanchuan Peng, Fuhui Long, and Chris Ding, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 27, No. 8, pp.1226-1238, 2005.
Minimum redundancy feature selection from microarray gene expression data,
Chris Ding, and Hanchuan Peng, Journal of Bioinformatics and Computational Biology, Vol. 3, No. 2, pp.185-205, 2005.
Hanchuan Peng's mRMR Homepage at http://penglab.janelia.org/proj/mRMR/
Parameters
|  | Name | Type | Identifier | Description | Constraints | 
|---|
| Input | Data | table, input | DATA | - | - | 
| Output | Feature Selection | table, output | SELECTION | - | - | 
| Options | Class Identifier | table field | CLASS | - | - | 
| Verbose Output | boolean | VERBOSE | output of intermediate results to execution message window | Default: 1 | 
| Number of Features | integer number | mRMR_NFEATURES | - | Minimum: 1
Default: 50 | 
| Discretization | boolean | mRMR_DISCRETIZE | uncheck this means no discretizaton (i.e. data is already integer) | Default: 1 | 
| Discretization Threshold | floating point number | mRMR_THRESHOLD | a double number of the discretization threshold; set to 0 to make binarization | Minimum: 0.000000
Default: 1.000000 | 
| Selection Method | choice | mRMR_METHOD | - | Available Choices:
[0] Mutual Information Difference (MID)
[1] Mutual Information Quotient (MIQ)
Default: 0 | 
Command Line
Usage: saga_cmd table_calculus 12 [-DATA ] [-CLASS ] [-SELECTION ] [-VERBOSE ] [-mRMR_NFEATURES ] [-mRMR_DISCRETIZE ] [-mRMR_THRESHOLD ] [-mRMR_METHOD ]
  -DATA:             	Data
	table, input
  -CLASS:            	Class Identifier
	table field
  -SELECTION:        	Feature Selection
	table, output
  -VERBOSE:          	Verbose Output
	boolean
	Default: 1
  -mRMR_NFEATURES:   	Number of Features
	integer number
	Minimum: 1
	Default: 50
  -mRMR_DISCRETIZE:  	Discretization
	boolean
	Default: 1
  -mRMR_THRESHOLD:	Discretization Threshold
	floating point number
	Minimum: 0.000000
	Default: 1.000000
  -mRMR_METHOD:      	Selection Method
	choice
	Available Choices:
	[0] Mutual Information Difference (MID)
	[1] Mutual Information Quotient (MIQ)
	Default: 0