ISODATA Clustering for Grids
- Author: O.Conrad (c) 2016
- Menu: Imagery | Classification | Unsupervised
Description
This tool executes the Isodata unsupervised classification - clustering algorithm. Isodata stands for Iterative Self-Organizing Data Analysis Techniques. This is a more sophisticated algorithm which allows the number of clusters to be automatically adjusted during the iteration by merging similar clusters and splitting clusters with large standard deviations. The tool is based on Christos Iosifidis' Isodata implementation.
References
- isodata.c (Christos Iosifidis)
- A Fast Implementation of the ISODATA Clustering Algorithm
- Memarsadeghi, N., Mount, D. M., Netanyahu, N. S., Le Moigne, J. (2007): A Fast Implementation of the ISODATA Clustering Algorithm. International Journal of Computational Geometry and Applications, 17, 71-103. online.
Parameters
Name | Type | Identifier | Description | Constraints | |
---|---|---|---|---|---|
Input | Features | grid list, input | FEATURES | - | - |
Output | Clusters | grid, output | CLUSTER | - | - |
Statistics | table, output | STATISTICS | - | - | |
Options | Grid System | grid system | PARAMETERS_GRID_SYSTEM | - | - |
Normalize | boolean | NORMALIZE | - | Default: 0 | |
Maximum Number of Iterations | integer number | ITERATIONS | - | Minimum: 3 Default: 20 | |
Initial Number of Clusters | integer number | CLUSTER_INI | - | Minimum: 0 Default: 5 | |
Maximum Number of Clusters | integer number | CLUSTER_MAX | - | Minimum: 3 Default: 16 | |
Minimum Number of Samples in a Cluster | integer number | SAMPLES_MIN | - | Minimum: 2 Default: 5 | |
Update Colors from Features | boolean [GUI] | RGB_COLORS | Use the first three features in list to obtain blue, green, red components for class colour in look-up table. | Default: 0 | |
Start Partition | choice | INITIALIZE | - | Available Choices: [0] random [1] periodical [2] keep values Default: 0 |
Command Line
Usage: saga_cmd imagery_isocluster 0 [-FEATURES] [-CLUSTER ] [-STATISTICS ] [-NORMALIZE ] [-ITERATIONS ] [-CLUSTER_INI ] [-CLUSTER_MAX ] [-SAMPLES_MIN ] [-INITIALIZE ] -FEATURES: Features grid list, input -CLUSTER: Clusters grid, output -STATISTICS: Statistics table, output -NORMALIZE: Normalize boolean Default: 0 -ITERATIONS: Maximum Number of Iterations integer number Minimum: 3 Default: 20 -CLUSTER_INI: Initial Number of Clusters integer number Minimum: 0 Default: 5 -CLUSTER_MAX: Maximum Number of Clusters integer number Minimum: 3 Default: 16 -SAMPLES_MIN: Minimum Number of Samples in a Cluster integer number Minimum: 2 Default: 5 -INITIALIZE: Start Partition choice Available Choices: [0] random [1] periodical [2] keep values Default: 0