Object Based Image Segmentation
- Author: O.Conrad (c) 2014
- Menu: Imagery | Segmentation
Description
This Object Based Image Segmentation tool chain combines a number of tools for an easy derivation of geo-objects as polygons and is typically applied to satellite imagery. Segmentation is done using a 'Seeded Region Growing Algorithm'. Optionally the resulting polygons can be grouped by an unsupervised classification (k-means cluster analysis) or supervised classification (needs classified feature samples as additional input), both is performed on the basis of zonal feature grid statistics for each polygon object.
References
- Adams, R. & Bischof, L. (1994): Seeded Region Growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.16, No.6, p.641-647.
- Bechtel, B., Ringeler, A. & Boehner, J. (2008): Segmentation for Object Extraction of Trees using MATLAB and SAGA. In: Boehner, J., Blaschke, T., Montanarella, L. [Eds.]: SAGA - Seconds Out. Hamburger Beitraege zur Physischen Geographie und Landschaftsoekologie, 19:59-70. online.
Parameters
Name | Type | Identifier | Description | Constraints | |
---|---|---|---|---|---|
Input | Features | grid list, input | FEATURES | - | - |
Training Samples | table, input | SAMPLES | Training samples for supervised classification. Provide a class identifier in the first field followed by sample data corresponding to the selected feature attributes | - | |
Output | Segments | shapes, output | OBJECTS | - | - |
Options | Grid System | grid system | GRID_SYSTEM | - | - |
Normalize | boolean | NORMALIZE | - | Default: 0 | |
Band Width for Seed Point Generation | floating point number | SEEDS_BAND_WIDTH | Increase band width to get less seed points. | Default: 2.000000 | |
Neighbourhood | choice | RGA_NEIGHBOUR | - | Available Choices: [0] 4 (Neumann) [1] 8 (Moore) Default: 0 | |
Distance | choice | RGA_METHOD | - | Available Choices: [0] feature space and position [1] feature space Default: 0 | |
Variance in Feature Space | floating point number | RGA_SIG_1 | - | Minimum: 0.000000 Default: 1.000000 | |
Variance in Position Space | floating point number | RGA_SIG_2 | - | Minimum: 0.000000 Default: 1.000000 | |
Similarity Threshold | floating point number | RGA_SIMILARITY | - | Minimum: 0.000000 Default: 0.000000 | |
Generalization | integer number | MAJORITY_RADIUS | Applies a majority filter with given search radius to the segments grid. Is skipped if set to zero. | Default: 1 | |
Classification | choice | CLASSIFICATION | - | Available Choices: [0] none [1] cluster analysis [2] supervised classification Default: 0 | |
Split Distinct Polygon Parts | choice | SPLIT_POLYGONS | - | Available Choices: [0] no [1] yes Default: 0 | |
Number of Clusters | integer number | NCLUSTER | - | Default: 10 | |
Method | choice | CLASSIFIER | - | Available Choices: [0] Binary Encoding [1] Parallelepiped [2] Minimum Distance [3] Mahalanobis Distance [4] Maximum Likelihood [5] Spectral Angle Mapping Default: 0 |
Command Line
Usage: saga_cmd imagery_segmentation obia [-FEATURES] [-NORMALIZE ] [-OBJECTS ] [-SEEDS_BAND_WIDTH ] [-RGA_NEIGHBOUR ] [-RGA_METHOD ] [-RGA_SIG_1 ] [-RGA_SIG_2 ] [-RGA_SIMILARITY ] [-MAJORITY_RADIUS ] [-CLASSIFICATION ] [-SPLIT_POLYGONS ] [-NCLUSTER ] [-CLASSIFIER ] [-SAMPLES ] -FEATURES: Features grid list, input -NORMALIZE: Normalize boolean Default: 0 -OBJECTS: Segments shapes, output -SEEDS_BAND_WIDTH: Band Width for Seed Point Generation floating point number Default: 2.000000 -RGA_NEIGHBOUR: Neighbourhood choice Available Choices: [0] 4 (Neumann) [1] 8 (Moore) Default: 0 -RGA_METHOD: Distance choice Available Choices: [0] feature space and position [1] feature space Default: 0 -RGA_SIG_1: Variance in Feature Space floating point number Minimum: 0.000000 Default: 1.000000 -RGA_SIG_2: Variance in Position Space floating point number Minimum: 0.000000 Default: 1.000000 -RGA_SIMILARITY: Similarity Threshold floating point number Minimum: 0.000000 Default: 0.000000 -MAJORITY_RADIUS: Generalization integer number Default: 1 -CLASSIFICATION: Classification choice Available Choices: [0] none [1] cluster analysis [2] supervised classification Default: 0 -SPLIT_POLYGONS: Split Distinct Polygon Parts choice Available Choices: [0] no [1] yes Default: 0 -NCLUSTER: Number of Clusters integer number Default: 10 -CLASSIFIER: Method choice Available Choices: [0] Binary Encoding [1] Parallelepiped [2] Minimum Distance [3] Mahalanobis Distance [4] Maximum Likelihood [5] Spectral Angle Mapping Default: 0 -SAMPLES: Training Samples table, input