SAGA API  v9.6
kdtree.cpp
Go to the documentation of this file.
1 
3 // //
4 // SAGA //
5 // //
6 // System for Automated Geoscientific Analyses //
7 // //
8 // Application Programming Interface //
9 // //
10 // Library: SAGA_API //
11 // //
12 //-------------------------------------------------------//
13 // //
14 // kdtree.cpp //
15 // //
16 // Copyright (C) 2019 by Olaf Conrad //
17 // //
18 //-------------------------------------------------------//
19 // //
20 // This file is part of 'SAGA - System for Automated //
21 // Geoscientific Analyses'. //
22 // //
23 // This library is free software; you can redistribute //
24 // it and/or modify it under the terms of the GNU Lesser //
25 // General Public License as published by the Free //
26 // Software Foundation, either version 2.1 of the //
27 // License, or (at your option) any later version. //
28 // //
29 // This library is distributed in the hope that it will //
30 // be useful, but WITHOUT ANY WARRANTY; without even the //
31 // implied warranty of MERCHANTABILITY or FITNESS FOR A //
32 // PARTICULAR PURPOSE. See the GNU Lesser General Public //
33 // License for more details. //
34 // //
35 // You should have received a copy of the GNU Lesser //
36 // General Public License along with this program; if //
37 // not, see <http://www.gnu.org/licenses/>. //
38 // //
39 //-------------------------------------------------------//
40 // //
41 // e-mail: oconrad@saga-gis.org //
42 // //
43 // contact: Olaf Conrad //
44 // Institute of Geography //
45 // University of Hamburg //
46 // Germany //
47 // //
49 
50 //---------------------------------------------------------
51 #include "pointcloud.h"
52 
53 #include "nanoflann/nanoflann.hpp"
54 
55 
57 // //
58 // //
59 // //
61 
62 //---------------------------------------------------------
63 class CSG_KDTree_Adaptor
64 {
65 public:
66  CSG_KDTree_Adaptor(void) { m_pData = NULL; m_zScale = 1.; }
67  virtual ~CSG_KDTree_Adaptor(void) {}
68 
69  typedef nanoflann::KDTreeSingleIndexAdaptor<nanoflann::L2_Simple_Adaptor<double, CSG_KDTree_Adaptor>,
70  CSG_KDTree_Adaptor, 2> kd_tree_2d;
71 
72  typedef nanoflann::KDTreeSingleIndexAdaptor<nanoflann::L2_Simple_Adaptor<double, CSG_KDTree_Adaptor>,
73  CSG_KDTree_Adaptor, 3> kd_tree_3d;
74 
75  //-----------------------------------------------------
76  virtual size_t kdtree_get_point_count (void) const = 0;
77  virtual double kdtree_get_pt (const size_t Index, int Dimension) const = 0;
78 
79  template <class BBOX> bool kdtree_get_bbox (BBOX &bb) const
80  {
81  double Extent[3][2];
82 
83  if( !Get_Extent(Extent) )
84  {
85  return( false );
86  }
87 
88  bb[0].low = Extent[0][0]; bb[0].high = Extent[0][1];
89  bb[1].low = Extent[1][0]; bb[1].high = Extent[1][1];
90 
91  if( bb.size() > 2 )
92  {
93  bb[2].low = Extent[2][0]; bb[2].high = Extent[2][1];
94  }
95 
96  return( true );
97  }
98 
99  //-----------------------------------------------------
100  CSG_Data_Object * Get_Data_Object (void) { return( m_pData ); }
101 
102 
103 protected:
104 
105  double m_zScale;
106 
107  CSG_Data_Object *m_pData;
108 
109 
110  virtual bool Get_Extent (double Extent[3][2]) const { return( false ); }
111 
112 };
113 
114 //---------------------------------------------------------
115 class CSG_KDTree_Adaptor_Points : public CSG_KDTree_Adaptor
116 {
117 public:
118  CSG_KDTree_Adaptor_Points(CSG_Shapes *pPoints, int zField = -1, double zScale = 1.)
119  {
120  m_pData = m_pPoints = pPoints;
121  m_zField = m_pPoints && zField < m_pPoints->Get_Count() ? zField : -1;
122  m_zScale = zScale;
123  }
124 
125  virtual ~CSG_KDTree_Adaptor_Points(void) {}
126 
127  virtual size_t kdtree_get_point_count (void) const
128  {
129  return( m_pPoints->Get_Count() );
130  }
131 
132  virtual double kdtree_get_pt (const size_t Index, int Dimension) const
133  {
134  CSG_Shape *pPoint = m_pPoints->Get_Shape(Index);
135 
136  if( Dimension == 0 ) { return( pPoint->Get_Point().x ); }
137  if( Dimension == 1 ) { return( pPoint->Get_Point().y ); }
138  if( Dimension == 2 ) { return( (m_zField < 0 ? pPoint->Get_Z() : pPoint->asDouble(m_zField)) * m_zScale); }
139 
140  return( 0. );
141  }
142 
143 
144 protected:
145 
146  int m_zField;
147 
148  CSG_Shapes *m_pPoints;
149 
150 
151  virtual bool Get_Extent (double Extent[3][2]) const
152  {
153  Extent[0][0] = m_pPoints->Get_Extent().Get_XMin();
154  Extent[0][1] = m_pPoints->Get_Extent().Get_XMax();
155  Extent[1][0] = m_pPoints->Get_Extent().Get_YMin();
156  Extent[1][1] = m_pPoints->Get_Extent().Get_YMax();
157  Extent[2][0] = m_zField < 0 ? m_pPoints->Get_ZMin() : m_pPoints->Get_Minimum(m_zField);
158  Extent[2][1] = m_zField < 0 ? m_pPoints->Get_ZMax() : m_pPoints->Get_Maximum(m_zField);
159 
160  return( true );
161  }
162 
163 };
164 
165 //---------------------------------------------------------
166 class CSG_KDTree_Adaptor_PointCloud : public CSG_KDTree_Adaptor
167 {
168 public:
169  CSG_KDTree_Adaptor_PointCloud(CSG_PointCloud *pPoints, double zScale = 1.)
170  {
171  m_pData = m_pPoints = pPoints;
172  m_zScale = zScale;
173  }
174 
175  virtual ~CSG_KDTree_Adaptor_PointCloud(void) {}
176 
177  virtual size_t kdtree_get_point_count (void) const
178  {
179  return( m_pPoints->Get_Count() );
180  }
181 
182  virtual double kdtree_get_pt (const size_t Index, int Dimension) const
183  {
184  if( Dimension == 0 ) { return( m_pPoints->Get_X((sLong)Index) ); }
185  if( Dimension == 1 ) { return( m_pPoints->Get_Y((sLong)Index) ); }
186  if( Dimension == 2 ) { return( m_pPoints->Get_Z((sLong)Index) * m_zScale ); }
187 
188  return( 0. );
189  }
190 
191 
192 protected:
193 
194  CSG_PointCloud *m_pPoints;
195 
196 
197  virtual bool Get_Extent (double Extent[3][2]) const
198  {
199  Extent[0][0] = m_pPoints->Get_Extent().Get_XMin();
200  Extent[0][1] = m_pPoints->Get_Extent().Get_XMax();
201  Extent[1][0] = m_pPoints->Get_Extent().Get_YMin();
202  Extent[1][1] = m_pPoints->Get_Extent().Get_YMax();
203  Extent[2][0] = m_pPoints-> Get_ZMin();
204  Extent[2][1] = m_pPoints-> Get_ZMax();
205 
206  return( true );
207  }
208 
209 };
210 
211 //---------------------------------------------------------
212 class CSG_KDTree_Adaptor_Coordinates : public CSG_KDTree_Adaptor
213 {
214 public:
215  CSG_KDTree_Adaptor_Coordinates(const double **Points, size_t nPoints)
216  {
217  m_Points = Points;
218  m_nPoints = nPoints;
219  }
220 
221  virtual ~CSG_KDTree_Adaptor_Coordinates(void) {}
222 
223  virtual size_t kdtree_get_point_count (void) const
224  {
225  return( m_nPoints );
226  }
227 
228  virtual double kdtree_get_pt (const size_t Index, int Dimension) const
229  {
230  return( m_Points[Index][Dimension] );
231  }
232 
233 
234 protected:
235 
236  size_t m_nPoints;
237 
238  const double **m_Points;
239 
240 };
241 
242 
244 // //
245 // //
246 // //
248 
249 //---------------------------------------------------------
251 {
253 }
254 
255 //---------------------------------------------------------
257 {}
258 
259 //---------------------------------------------------------
261 {
262  m_pKDTree = NULL;
263  m_pAdaptor = NULL;
264 }
265 
266 //---------------------------------------------------------
267 const char * CSG_KDTree::Get_Version(void)
268 {
269  static CSG_String Version(CSG_String::Format("nanoflann %d.%d.%d",
270  (NANOFLANN_VERSION&0xf00)/0x100,
271  (NANOFLANN_VERSION&0x0f0)/0x010,
272  (NANOFLANN_VERSION&0x00f)/0x001)
273  );
274 
275  return( Version );
276 }
277 
278 //---------------------------------------------------------
280 {
282 
283  m_Points .Destroy();
284  m_Indices .Destroy();
286 
287  return( true );
288 }
289 
290 //---------------------------------------------------------
292 {
293  if( i < Get_Match_Count() )
294  {
295  CSG_Shapes *pShapes = m_pAdaptor && m_pAdaptor->Get_Data_Object() ? m_pAdaptor->Get_Data_Object()->asShapes() : NULL;
296 
297  if( pShapes )
298  {
299  return( pShapes->Get_Shape(Get_Match_Index(i)) );
300  }
301  }
302 
303  return( NULL );
304 }
305 
306 
308 // //
309 // //
310 // //
312 
313 //---------------------------------------------------------
317 //---------------------------------------------------------
319 {
321 }
322 
323 //---------------------------------------------------------
325 {
326  Destroy();
327 }
328 
329 //---------------------------------------------------------
335 //---------------------------------------------------------
337 {
339 
340  Create(pPoints, Field);
341 }
342 
343 bool CSG_KDTree_2D::Create(CSG_Shapes *pPoints, int Field)
344 {
345  Destroy();
346 
347  //-----------------------------------------------------
348  if( Field >= 0 && Field < pPoints->Get_Field_Count() )
349  {
350  m_Points.Create(3, (int)pPoints->Get_Count());
351 
352  int n = 0;
353 
354  for(int i=0; i<pPoints->Get_Count(); i++)
355  {
356  CSG_Shape *pPoint = pPoints->Get_Shape(i);
357 
358  if( !pPoint->is_NoData(Field) )
359  {
360  m_Points[n][0] = pPoint->Get_Point().x;
361  m_Points[n][1] = pPoint->Get_Point().y;
362  m_Points[n][2] = pPoint->asDouble(Field);
363 
364  n++;
365  }
366  }
367 
368  m_Points.Set_Rows(n); // resize if there are no-data values
369 
370  if( n < 1 )
371  {
372  Destroy();
373 
374  return( false );
375  }
376 
377  m_pAdaptor = new CSG_KDTree_Adaptor_Coordinates(m_Points, m_Points.Get_NRows());
378  m_pKDTree = new CSG_KDTree_Adaptor::kd_tree_2d(2, *m_pAdaptor, nanoflann::KDTreeSingleIndexAdaptorParams(10));
379 
380  ((CSG_KDTree_Adaptor::kd_tree_2d *)m_pKDTree)->buildIndex();
381 
382  return( true );
383  }
384 
385  //-----------------------------------------------------
386  if( pPoints->Get_Count() < 1 )
387  {
388  return( false );
389  }
390 
391  m_pAdaptor = new CSG_KDTree_Adaptor_Points(pPoints);
392  m_pKDTree = new CSG_KDTree_Adaptor::kd_tree_2d(2, *m_pAdaptor, nanoflann::KDTreeSingleIndexAdaptorParams(10));
393 
394  ((CSG_KDTree_Adaptor::kd_tree_2d *)m_pKDTree)->buildIndex();
395 
396  return( true );
397 }
398 
399 //---------------------------------------------------------
403 //---------------------------------------------------------
405 {
407 
408  Create(pPoints);
409 }
410 
412 {
413  if( pPoints->Get_Count() < 1 )
414  {
415  return( false );
416  }
417 
418  Destroy();
419 
420  m_pAdaptor = new CSG_KDTree_Adaptor_PointCloud(pPoints);
421  m_pKDTree = new CSG_KDTree_Adaptor::kd_tree_2d(2, *m_pAdaptor, nanoflann::KDTreeSingleIndexAdaptorParams(10));
422 
423  ((CSG_KDTree_Adaptor::kd_tree_2d *)m_pKDTree)->buildIndex();
424 
425  return( true );
426 }
427 
428 //---------------------------------------------------------
433 //---------------------------------------------------------
435 {
437 
438  Create(Points);
439 }
440 
442 {
443  if( Points.Get_NCols() < 2 )
444  {
445  return( false );
446  }
447 
448  return( Create((const double **)Points.Get_Data(), Points.Get_NRows()) );
449 }
450 
451 //---------------------------------------------------------
456 //---------------------------------------------------------
457 CSG_KDTree_2D::CSG_KDTree_2D(const double **Points, size_t nPoints)
458 {
460 
461  Create(Points, nPoints);
462 }
463 
464 bool CSG_KDTree_2D::Create(const double **Points, size_t nPoints)
465 {
466  if( nPoints < 1 )
467  {
468  return( false );
469  }
470 
471  Destroy();
472 
473  m_pAdaptor = new CSG_KDTree_Adaptor_Coordinates(Points, nPoints);
474  m_pKDTree = new CSG_KDTree_Adaptor::kd_tree_2d(2, *m_pAdaptor, nanoflann::KDTreeSingleIndexAdaptorParams(10));
475 
476  ((CSG_KDTree_Adaptor::kd_tree_2d *)m_pKDTree)->buildIndex();
477 
478  return( true );
479 }
480 
481 //---------------------------------------------------------
483 {
484  if( m_pKDTree )
485  {
486  delete((CSG_KDTree_Adaptor::kd_tree_2d *)m_pKDTree);
487 
488  m_pKDTree = NULL;
489  }
490 
491  return( CSG_KDTree::Destroy() );
492 }
493 
494 
496 // //
498 
499 //---------------------------------------------------------
500 size_t CSG_KDTree_2D::Get_Nearest_Points(double Coordinate[2], size_t Count, double Radius)
501 {
502  return( Get_Nearest_Points(Coordinate, Count, Radius, m_Indices, m_Distances) );
503 }
504 
505 //---------------------------------------------------------
506 size_t CSG_KDTree_2D::Get_Nearest_Points(double Coordinate[2], size_t Count, double Radius, CSG_Array_sLong &Indices, CSG_Vector &Distances)
507 {
508  if( Radius > 0. )
509  {
510  nanoflann::SearchParams SearchParams;
511 
512  SearchParams.sorted = Count > 0;
513 
514  std::vector<std::pair<size_t, double>> Matches;
515 
516  ((CSG_KDTree_Adaptor::kd_tree_2d *)m_pKDTree)->radiusSearch(Coordinate, Radius*Radius, Matches, SearchParams);
517 
518  if( Count == 0 || Count > Matches.size() )
519  {
520  Count = Matches.size();
521  }
522 
523  Indices .Create(Count);
524  Distances.Create(Count);
525 
526  for(size_t i=0; i<Count; i++)
527  {
528  Indices [i] = (int)Matches[i]. first ;
529  Distances[i] = sqrt(Matches[i].second);
530  }
531  }
532  else if( Count > 0 )
533  {
534  size_t *_Indices = new size_t[Count];
535 
536  Distances.Create(Count);
537 
538  Count = Get_Nearest_Points(Coordinate, Count, _Indices, Distances.Get_Data());
539 
540  if( Count < (size_t)Distances.Get_N() )
541  {
542  Distances.Set_Rows(Count);
543  }
544 
545  Indices.Create(Count);
546 
547  for(size_t i=0; i<Count; i++)
548  {
549  Indices[i] = (int)(_Indices[i]);
550  }
551 
552  delete[](_Indices);
553  }
554 
555  return( Count );
556 }
557 
558 //---------------------------------------------------------
559 size_t CSG_KDTree_2D::Get_Nearest_Points(double Coordinate[2], size_t Count, size_t *Indices, double *Distances)
560 {
561  Count = ((CSG_KDTree_Adaptor::kd_tree_2d *)m_pKDTree)->knnSearch(Coordinate, Count, Indices, Distances);
562 
563  for(size_t i=0; i<Count; i++)
564  {
565  Distances[i] = sqrt(Distances[i]);
566  }
567 
568  return( Count );
569 }
570 
571 //---------------------------------------------------------
572 bool CSG_KDTree_2D::Get_Nearest_Point(double Coordinate[2], size_t &Index, double &Distance)
573 {
574  return( Get_Nearest_Points(Coordinate, 1, &Index, &Distance) == 1 );
575 }
576 
577 //---------------------------------------------------------
578 bool CSG_KDTree_2D::Get_Nearest_Point(double Coordinate[2], size_t &Index)
579 {
580  double Distance;
581 
582  return( Get_Nearest_Points(Coordinate, 1, &Index, &Distance) == 1 );
583 }
584 
585 //---------------------------------------------------------
586 bool CSG_KDTree_2D::Get_Nearest_Value(double Coordinate[2], double &Value)
587 {
588  size_t Index; double Distance;
589 
590  if( Get_Nearest_Points(Coordinate, 1, &Index, &Distance) == 1 )
591  {
592  Value = m_Points.Get_Data() ? Get_Point_Value(Index) : (double)Index;
593 
594  return( true );
595  }
596 
597  return( false );
598 }
599 
600 //---------------------------------------------------------
602 {
603  size_t Index; CSG_Shapes *pShapes = m_pAdaptor && m_pAdaptor->Get_Data_Object() ? m_pAdaptor->Get_Data_Object()->asShapes() : NULL;
604 
605  return( pShapes && Get_Nearest_Point(Coordinate, Index) ? pShapes->Get_Shape((sLong)Index) : NULL );
606 }
607 
608 //---------------------------------------------------------
609 size_t CSG_KDTree_2D::Get_Duplicates(double Coordinate[2], CSG_Array_sLong &Indices, CSG_Vector &Distances)
610 {
611  nanoflann::SearchParams SearchParams;
612 
613  SearchParams.sorted = false;
614 
615  std::vector<std::pair<size_t, double>> Matches;
616 
617  ((CSG_KDTree_Adaptor::kd_tree_2d *)m_pKDTree)->radiusSearch(Coordinate, 0.0000001, Matches, SearchParams);
618 
619  Indices .Create(Matches.size());
620  Distances.Create(Matches.size());
621 
622  size_t Count = 0;
623 
624  for(size_t i=0; i<Matches.size(); i++)
625  {
626  if( Matches[i].second > 0. )
627  {
628  Indices.Dec_Array();
629  }
630  else
631  {
632  Indices[Count++] = (int)Matches[i].first;
633  }
634  }
635 
636  return( Count );
637 }
638 
639 //---------------------------------------------------------
640 size_t CSG_KDTree_2D::Get_Duplicates(double Coordinate[2])
641 {
642  return( Get_Duplicates(Coordinate, m_Indices, m_Distances) );
643 }
644 
645 //---------------------------------------------------------
646 size_t CSG_KDTree_2D::Get_Nearest_Points(double x, double y, size_t Count, double Radius)
647 {
648  double c[2]; c[0] = x; c[1] = y; return( Get_Nearest_Points(c, Count, Radius) );
649 }
650 
651 size_t CSG_KDTree_2D::Get_Nearest_Points(double x, double y, size_t Count, double Radius, CSG_Array_sLong &Indices, CSG_Vector &Distances)
652 {
653  double c[2]; c[0] = x; c[1] = y; return( Get_Nearest_Points(c, Count, Radius, Indices, Distances) );
654 }
655 
656 size_t CSG_KDTree_2D::Get_Nearest_Points(double x, double y, size_t Count, size_t *Indices, double *Distances)
657 {
658  double c[2]; c[0] = x; c[1] = y; return( Get_Nearest_Points(c, Count, Indices, Distances) );
659 }
660 
661 bool CSG_KDTree_2D::Get_Nearest_Point(double x, double y, size_t &Index, double &Distance)
662 {
663  double c[2]; c[0] = x; c[1] = y; return( Get_Nearest_Point(c, Index, Distance) );
664 }
665 
666 bool CSG_KDTree_2D::Get_Nearest_Point(double x, double y, size_t &Index)
667 {
668  double c[2]; c[0] = x; c[1] = y; return( Get_Nearest_Point(c, Index) );
669 }
670 
671 bool CSG_KDTree_2D::Get_Nearest_Value(double x, double y, double &Value)
672 {
673  double c[2]; c[0] = x; c[1] = y; return( Get_Nearest_Value(c, Value) );
674 }
675 
677 {
678  double c[2]; c[0] = x; c[1] = y; return( Get_Nearest_Shape(c) );
679 }
680 
681 size_t CSG_KDTree_2D::Get_Duplicates(double x, double y, CSG_Array_sLong &Indices, CSG_Vector &Distances)
682 {
683  double c[2]; c[0] = x; c[1] = y; return( Get_Duplicates(c, Indices, Distances) );
684 }
685 
686 size_t CSG_KDTree_2D::Get_Duplicates(double x, double y)
687 {
688  double c[2]; c[0] = x; c[1] = y; return( Get_Duplicates(c) );
689 }
690 
691 
693 // //
694 // //
695 // //
697 
698 //---------------------------------------------------------
700 {
702 }
703 
704 //---------------------------------------------------------
706 {
707  Destroy();
708 }
709 
710 //---------------------------------------------------------
719 //---------------------------------------------------------
720 CSG_KDTree_3D::CSG_KDTree_3D(CSG_Shapes *pPoints, int Field, int zField, double zScale)
721 {
723 
724  Create(pPoints, Field, zField, zScale);
725 }
726 
727 bool CSG_KDTree_3D::Create(CSG_Shapes *pPoints, int Field, int zField, double zScale)
728 {
729  Destroy();
730 
731  //-----------------------------------------------------
732  if( Field >= 0 && Field < pPoints->Get_Field_Count() )
733  {
734  m_Points.Create(4, (int)pPoints->Get_Count());
735 
736  int n = 0;
737 
738  for(int i=0; i<pPoints->Get_Count(); i++)
739  {
740  CSG_Shape *pPoint = pPoints->Get_Shape(i);
741 
742  if( !pPoint->is_NoData(Field) )
743  {
744  m_Points[n][0] = pPoint->Get_Point().x;
745  m_Points[n][1] = pPoint->Get_Point().y;
746  m_Points[n][2] = zScale * (zField < 0 ? pPoint->Get_Z() : pPoint->asDouble(zField));
747  m_Points[n][3] = pPoint->asDouble(Field);
748 
749  n++;
750  }
751  }
752 
753  m_Points.Set_Rows(n); // resize if there are no-data values
754 
755  if( n < 1 )
756  {
757  Destroy();
758 
759  return( false );
760  }
761 
762  m_pAdaptor = new CSG_KDTree_Adaptor_Coordinates(m_Points, m_Points.Get_NRows());
763  m_pKDTree = new CSG_KDTree_Adaptor::kd_tree_3d(3, *m_pAdaptor, nanoflann::KDTreeSingleIndexAdaptorParams(10));
764 
765  ((CSG_KDTree_Adaptor::kd_tree_3d *)m_pKDTree)->buildIndex();
766 
767  return( true );
768  }
769 
770  //-----------------------------------------------------
771  if( pPoints->Get_Count() < 1 )
772  {
773  return( false );
774  }
775 
776  m_pAdaptor = new CSG_KDTree_Adaptor_Points(pPoints, zField, zScale);
777  m_pKDTree = new CSG_KDTree_Adaptor::kd_tree_3d(3, *m_pAdaptor, nanoflann::KDTreeSingleIndexAdaptorParams(10));
778 
779  ((CSG_KDTree_Adaptor::kd_tree_3d *)m_pKDTree)->buildIndex();
780 
781  return( true );
782 }
783 
784 //---------------------------------------------------------
786 {
788 
789  Create(pPoints);
790 }
791 
793 {
794  if( pPoints->Get_Count() < 1 )
795  {
796  return( false );
797  }
798 
799  Destroy();
800 
801  m_pAdaptor = new CSG_KDTree_Adaptor_PointCloud(pPoints);
802  m_pKDTree = new CSG_KDTree_Adaptor::kd_tree_3d(3, *m_pAdaptor, nanoflann::KDTreeSingleIndexAdaptorParams(10));
803 
804  ((CSG_KDTree_Adaptor::kd_tree_3d *)m_pKDTree)->buildIndex();
805 
806  return( true );
807 }
808 
809 //---------------------------------------------------------
814 //---------------------------------------------------------
816 {
818 
819  Create(Points);
820 }
821 
823 {
824  if( Points.Get_NCols() < 3 )
825  {
826  return( false );
827  }
828 
829  return( Create((const double **)Points.Get_Data(), Points.Get_NRows()) );
830 }
831 
832 //---------------------------------------------------------
837 //---------------------------------------------------------
838 CSG_KDTree_3D::CSG_KDTree_3D(const double **Points, size_t nPoints)
839 {
841 
842  Create(Points, nPoints);
843 }
844 
845 bool CSG_KDTree_3D::Create(const double **Points, size_t nPoints)
846 {
847  if( nPoints < 1 )
848  {
849  return( false );
850  }
851 
852  Destroy();
853 
854  m_pAdaptor = new CSG_KDTree_Adaptor_Coordinates(Points, nPoints);
855  m_pKDTree = new CSG_KDTree_Adaptor::kd_tree_3d(3, *m_pAdaptor, nanoflann::KDTreeSingleIndexAdaptorParams(10));
856 
857  ((CSG_KDTree_Adaptor::kd_tree_3d *)m_pKDTree)->buildIndex();
858 
859  return( true );
860 }
861 
862 //---------------------------------------------------------
864 {
865  if( m_pKDTree )
866  {
867  delete((CSG_KDTree_Adaptor::kd_tree_3d *)m_pKDTree);
868 
869  m_pKDTree = NULL;
870  }
871 
872  return( CSG_KDTree::Destroy() );
873 }
874 
875 
877 // //
879 
880 //---------------------------------------------------------
881 size_t CSG_KDTree_3D::Get_Nearest_Points(double Coordinate[3], size_t Count, double Radius)
882 {
883  return( Get_Nearest_Points(Coordinate, Count, Radius, m_Indices, m_Distances) );
884 }
885 
886 //---------------------------------------------------------
887 size_t CSG_KDTree_3D::Get_Nearest_Points(double Coordinate[3], size_t Count, double Radius, CSG_Array_sLong &Indices, CSG_Vector &Distances)
888 {
889  if( Radius > 0. )
890  {
891  nanoflann::SearchParams SearchParams;
892 
893  SearchParams.sorted = Count > 0;
894 
895  std::vector<std::pair<size_t, double>> Matches;
896 
897  ((CSG_KDTree_Adaptor::kd_tree_3d *)m_pKDTree)->radiusSearch(Coordinate, Radius*Radius, Matches, SearchParams);
898 
899  if( Count == 0 || Count > Matches.size() )
900  {
901  Count = Matches.size();
902  }
903 
904  Indices .Create(Count);
905  Distances.Create(Count);
906 
907  for(size_t i=0; i<Count; i++)
908  {
909  Indices [i] = (int)Matches[i]. first ;
910  Distances[i] = sqrt(Matches[i].second);
911  }
912  }
913  else if( Count > 0 )
914  {
915  size_t *_Indices = new size_t[Count];
916 
917  Distances.Create(Count);
918 
919  Count = Get_Nearest_Points(Coordinate, Count, _Indices, Distances.Get_Data());
920 
921  if( Count < (size_t)Distances.Get_N() )
922  {
923  Distances.Set_Rows(Count);
924  }
925 
926  Indices.Create(Count);
927 
928  for(size_t i=0; i<Count; i++)
929  {
930  Indices[i] = (int)(_Indices[i]);
931  }
932 
933  delete[](_Indices);
934  }
935 
936  return( Count );
937 }
938 
939 //---------------------------------------------------------
940 size_t CSG_KDTree_3D::Get_Nearest_Points(double Coordinate[3], size_t Count, size_t *Indices, double *Distances)
941 {
942  Count = ((CSG_KDTree_Adaptor::kd_tree_3d *)m_pKDTree)->knnSearch(Coordinate, Count, Indices, Distances);
943 
944  for(size_t i=0; i<Count; i++)
945  {
946  Distances[i] = sqrt(Distances[i]);
947  }
948 
949  return( Count );
950 }
951 
952 //---------------------------------------------------------
953 bool CSG_KDTree_3D::Get_Nearest_Point(double Coordinate[3], size_t &Index, double &Distance)
954 {
955  return( Get_Nearest_Points(Coordinate, 1, &Index, &Distance) == 1 );
956 }
957 
958 //---------------------------------------------------------
959 bool CSG_KDTree_3D::Get_Nearest_Point(double Coordinate[3], size_t &Index)
960 {
961  double Distance;
962 
963  return( Get_Nearest_Points(Coordinate, 1, &Index, &Distance) == 1 );
964 }
965 
966 //---------------------------------------------------------
967 bool CSG_KDTree_3D::Get_Nearest_Value(double Coordinate[3], double &Value)
968 {
969  size_t Index; double Distance;
970 
971  if( Get_Nearest_Points(Coordinate, 1, &Index, &Distance) == 1 )
972  {
973  Value = m_Points.Get_Data() ? Get_Point_Value(Index) : (double)Index;
974 
975  return( true );
976  }
977 
978  return( false );
979 }
980 
981 //---------------------------------------------------------
983 {
984  size_t Index; CSG_Shapes *pShapes = m_pAdaptor && m_pAdaptor->Get_Data_Object() ? m_pAdaptor->Get_Data_Object()->asShapes() : NULL;
985 
986  return( pShapes && Get_Nearest_Point(Coordinate, Index) ? pShapes->Get_Shape((sLong)Index) : NULL );
987 }
988 
989 //---------------------------------------------------------
990 size_t CSG_KDTree_3D::Get_Duplicates(double Coordinate[3], CSG_Array_sLong &Indices, CSG_Vector &Distances)
991 {
992  nanoflann::SearchParams SearchParams;
993 
994  SearchParams.sorted = false;
995 
996  std::vector<std::pair<size_t, double>> Matches;
997 
998  ((CSG_KDTree_Adaptor::kd_tree_3d *)m_pKDTree)->radiusSearch(Coordinate, 0.0000001, Matches, SearchParams);
999 
1000  Indices .Create(Matches.size());
1001  Distances.Create(Matches.size());
1002 
1003  size_t Count = 0;
1004 
1005  for(size_t i=0; i<Matches.size(); i++)
1006  {
1007  if( Matches[i].second > 0. )
1008  {
1009  Indices.Dec_Array();
1010  }
1011  else
1012  {
1013  Indices[Count++] = (int)Matches[i].first;
1014  }
1015  }
1016 
1017  return( Count );
1018 }
1019 
1020 //---------------------------------------------------------
1021 size_t CSG_KDTree_3D::Get_Duplicates(double Coordinate[3])
1022 {
1023  return( Get_Duplicates(Coordinate, m_Indices, m_Distances) );
1024 }
1025 
1026 //---------------------------------------------------------
1027 size_t CSG_KDTree_3D::Get_Nearest_Points(double x, double y, double z, size_t Count, double Radius)
1028 {
1029  double c[3]; c[0] = x; c[1] = y; c[2] = z; return( Get_Nearest_Points(c, Count, Radius) );
1030 }
1031 
1032 size_t CSG_KDTree_3D::Get_Nearest_Points(double x, double y, double z, size_t Count, double Radius, CSG_Array_sLong &Indices, CSG_Vector &Distances)
1033 {
1034  double c[3]; c[0] = x; c[1] = y; c[2] = z; return( Get_Nearest_Points(c, Count, Radius, Indices, Distances) );
1035 }
1036 
1037 size_t CSG_KDTree_3D::Get_Nearest_Points(double x, double y, double z, size_t Count, size_t *Indices, double *Distances)
1038 {
1039  double c[3]; c[0] = x; c[1] = y; c[2] = z; return( Get_Nearest_Points(c, Count, Indices, Distances) );
1040 }
1041 
1042 bool CSG_KDTree_3D::Get_Nearest_Point(double x, double y, double z, size_t &Index, double &Distance)
1043 {
1044  double c[3]; c[0] = x; c[1] = y; c[2] = z; return( Get_Nearest_Point(c, Index, Distance) );
1045 }
1046 
1047 bool CSG_KDTree_3D::Get_Nearest_Point(double x, double y, double z, size_t &Index)
1048 {
1049  double c[3]; c[0] = x; c[1] = y; c[2] = z; return( Get_Nearest_Point(c, Index) );
1050 }
1051 
1052 bool CSG_KDTree_3D::Get_Nearest_Value(double x, double y, double z, double &Value)
1053 {
1054  double c[3]; c[0] = x; c[1] = y; c[2] = z; return( Get_Nearest_Value(c, Value) );
1055 }
1056 
1057 CSG_Shape * CSG_KDTree_3D::Get_Nearest_Shape(double x, double y, double z)
1058 {
1059  double c[3]; c[0] = x; c[1] = y; c[2] = z; return( Get_Nearest_Shape(c) );
1060 }
1061 
1062 size_t CSG_KDTree_3D::Get_Duplicates(double x, double y, double z, CSG_Array_sLong &Indices, CSG_Vector &Distances)
1063 {
1064  double c[3]; c[0] = x; c[1] = y; c[2] = z; return( Get_Duplicates(c, Indices, Distances) );
1065 }
1066 
1067 size_t CSG_KDTree_3D::Get_Duplicates(double x, double y, double z)
1068 {
1069  double c[3]; c[0] = x; c[1] = y; c[2] = z; return( Get_Duplicates(c) );
1070 }
1071 
1072 
1074 // //
1075 // //
1076 // //
1078 
1079 //---------------------------------------------------------
1080 #include "parameters.h"
1081 
1082 //---------------------------------------------------------
1084 {
1085  m_pParameters = NULL;
1086 
1087  m_minPoints = 1;
1088  m_maxPoints = 0;
1089  m_Radius = 0.;
1090 }
1091 
1092 //---------------------------------------------------------
1093 bool CSG_Parameters_Point_Search::Create(CSG_Parameters *pParameters, const CSG_String &Parent, size_t minPoints)
1094 {
1095  if( pParameters == NULL || m_pParameters != NULL )
1096  {
1097  return( false );
1098  }
1099 
1100  m_pParameters = pParameters;
1101 
1102  if( !Parent.is_Empty() && !(*m_pParameters)(Parent) )
1103  {
1104  m_pParameters->Add_Node("", Parent, _TL("Search Options"), _TL(""));
1105  }
1106 
1107  //-----------------------------------------------------
1108  m_pParameters->Add_Choice(Parent,
1109  "SEARCH_RANGE" , _TL("Search Range"),
1110  _TL(""),
1111  CSG_String::Format("%s|%s",
1112  _TL("local"),
1113  _TL("global")
1114  ), 1
1115  );
1116 
1117  m_pParameters->Add_Double("SEARCH_RANGE",
1118  "SEARCH_RADIUS" , _TL("Maximum Search Distance"),
1119  _TL("local maximum search distance given in map units"),
1120  1000., 0., true
1121  );
1122 
1123  m_pParameters->Add_Choice(Parent,
1124  "SEARCH_POINTS_ALL" , _TL("Number of Points"),
1125  _TL(""),
1126  CSG_String::Format("%s|%s",
1127  _TL("maximum number of nearest points"),
1128  _TL("all points within search distance")
1129  ), 1
1130  );
1131 
1132  if( minPoints > 0 )
1133  {
1134  m_pParameters->Add_Int("SEARCH_POINTS_ALL",
1135  "SEARCH_POINTS_MIN" , _TL("Minimum"),
1136  _TL("minimum number of points to use"),
1137  (int)minPoints, 1, true
1138  );
1139  }
1140 
1141  m_pParameters->Add_Int("SEARCH_POINTS_ALL",
1142  "SEARCH_POINTS_MAX" , _TL("Maximum"),
1143  _TL("maximum number of nearest points"),
1144  20, 1, true
1145  );
1146 
1147  return( true );
1148 }
1149 
1150 
1152 // //
1154 
1155 //---------------------------------------------------------
1157 {
1158  if( !m_pParameters || !pParameters || m_pParameters->Get_Identifier().Cmp(pParameters->Get_Identifier()) || !pParameter || !pParameter->asShapes() )
1159  {
1160  return( false );
1161  }
1162 
1163  pParameters->Set_Parameter("SEARCH_RADIUS", SG_Get_Rounded_To_SignificantFigures(
1164  5 * sqrt(pParameter->asShapes()->Get_Extent().Get_Area() / pParameter->asShapes()->Get_Count()), 1
1165  ));
1166 
1167  return( true );
1168 }
1169 
1170 //---------------------------------------------------------
1172 {
1173  if( !m_pParameters || !pParameters || m_pParameters->Get_Identifier().Cmp(pParameters->Get_Identifier()) || !pParameter )
1174  {
1175  return( false );
1176  }
1177 
1178  if( pParameter->Cmp_Identifier("SEARCH_RANGE") )
1179  {
1180  pParameters->Set_Enabled("SEARCH_RADIUS" , pParameter->asInt() == 0); // local
1181  pParameters->Set_Enabled("SEARCH_POINTS_MIN", pParameter->asInt() == 0); // when global, no minimum number of points
1182  }
1183 
1184  if( pParameter->Cmp_Identifier("SEARCH_POINTS_ALL") )
1185  {
1186  pParameters->Set_Enabled("SEARCH_POINTS_MAX", pParameter->asInt() == 0); // maximum number of points
1187  pParameters->Set_Enabled("SEARCH_DIRECTION" , pParameter->asInt() == 0); // maximum number of points per quadrant
1188  }
1189 
1190  return( true );
1191 }
1192 
1193 
1195 // //
1197 
1198 //---------------------------------------------------------
1200 {
1201  if( m_pParameters )
1202  {
1203  m_minPoints = (*m_pParameters)("SEARCH_POINTS_MIN")
1204  ? (*m_pParameters)("SEARCH_POINTS_MIN")->asInt () : 0;
1205  m_maxPoints = (*m_pParameters)("SEARCH_POINTS_ALL")->asInt () == 0
1206  ? (*m_pParameters)("SEARCH_POINTS_MAX")->asInt () : 0;
1207  m_Radius = (*m_pParameters)("SEARCH_RANGE" )->asInt () == 0
1208  ? (*m_pParameters)("SEARCH_RADIUS" )->asDouble() : 0.;
1209 
1210  return( true );
1211  }
1212 
1213  return( false );
1214 }
1215 
1216 //---------------------------------------------------------
1218 {
1219  if( bUpdate )
1220  {
1221  Update();
1222  }
1223 
1224  return( m_maxPoints == 0 && m_Radius <= 0. );
1225 }
1226 
1227 
1229 // //
1230 // //
1231 // //
1233 
1234 //---------------------------------------------------------
1236 {
1237  Finalize();
1238 }
1239 
1240 
1242 // //
1244 
1245 //---------------------------------------------------------
1247 {
1248  if( !Finalize() || !m_pParameters || !pPoints || pPoints->Get_Count() < 1 || !Update() )
1249  {
1250  return( false );
1251  }
1252 
1253  if( Do_Use_All() )
1254  {
1255  m_pPoints = pPoints;
1256  m_zField = zField;
1257 
1258  return( true );
1259  }
1260 
1261  return( m_Search.Create(pPoints, m_zField = zField) );
1262 }
1263 
1264 //---------------------------------------------------------
1266 {
1267  m_pPoints = NULL;
1268  m_zField = -1;
1269 
1270  m_Search.Destroy();
1271 
1272  return( true );
1273 }
1274 
1275 
1277 // //
1279 
1280 //---------------------------------------------------------
1282 {
1283  if( m_pPoints ) // without search engine
1284  {
1285  return( m_pPoints->Get_Count() );
1286  }
1287  else // using search engine
1288  {
1289  return( m_Search.Get_Nearest_Points(x, y, m_maxPoints, m_Radius) );
1290  }
1291 }
1292 
1293 //---------------------------------------------------------
1295 {
1296  return( Set_Location(p.x, p.y) );
1297 }
1298 
1299 
1301 // //
1303 
1304 //---------------------------------------------------------
1305 bool CSG_Parameters_Point_Search_KDTree_2D::Get_Point(sLong Index, double &x, double &y, double &z)
1306 {
1307  if( m_pPoints ) // without search engine
1308  {
1309  CSG_Shape *pPoint = m_pPoints->Get_Shape(Index);
1310 
1311  if( pPoint && !pPoint->is_NoData(m_zField) )
1312  {
1313  x = pPoint->Get_Point().x;
1314  y = pPoint->Get_Point().y;
1315 
1316  z = m_zField < 0 ? (double)Index : pPoint->asDouble(m_zField);
1317 
1318  return( true );
1319  }
1320  }
1321  else // using search engine
1322  {
1323  if( Index >= 0 && (size_t)Index < m_Search.Get_Match_Count() )
1324  {
1325  if( m_zField >= 0 )
1326  {
1327  double *p = m_Search.Get_Point((size_t)Index);
1328 
1329  x = p[0]; y = p[1]; z = p[2];
1330 
1331  return( true );
1332  }
1333  else
1334  {
1335  CSG_Shape *pPoint = m_Search.Get_Match_Shape((size_t)Index);
1336 
1337  if( pPoint )
1338  {
1339  x = pPoint->Get_Point().x;
1340  y = pPoint->Get_Point().y;
1341 
1342  z = (double)Index;
1343 
1344  return( true );
1345  }
1346  }
1347  }
1348  }
1349 
1350  return( false );
1351 }
1352 
1353 
1355 // //
1357 
1358 //---------------------------------------------------------
1360 {
1361  CSG_Array_sLong Index; if( Get_Points(x, y, Index) )
1362  {
1363  Points.Clear();
1364 
1365  for(sLong i=0; i<Index.Get_Size(); i++)
1366  {
1367  if( m_zField >= 0 )
1368  {
1369  double *p = m_Search.Get_Point((size_t)Index[i]);
1370 
1371  Points.Add(p[0], p[1], p[2]);
1372  }
1373  else
1374  {
1375  CSG_Shape *pPoint = m_Search.Get_Match_Shape((size_t)Index[i]);
1376 
1377  if( pPoint )
1378  {
1379  Points.Add(pPoint->Get_Point().x, pPoint->Get_Point().y, (double)Index[i]);
1380  }
1381  }
1382  }
1383 
1384  return( true );
1385  }
1386 
1387  return( false );
1388 }
1389 
1390 //---------------------------------------------------------
1392 {
1393  return( Get_Points(p.x, p.y, Points) );
1394 }
1395 
1396 
1398 // //
1400 
1401 //---------------------------------------------------------
1403 {
1404  if( m_pPoints ) // without search engine
1405  {
1406  return( m_pPoints->Get_Count() );
1407  }
1408  else // using search engine
1409  {
1410  CSG_Vector Distances;
1411 
1412  return( m_Search.Get_Nearest_Points(x, y, m_maxPoints, m_Radius, Indices, Distances) >= m_minPoints );
1413  }
1414 }
1415 
1416 //---------------------------------------------------------
1418 {
1419  return( Get_Points(p.x, p.y, Indices) );
1420 }
1421 
1422 //---------------------------------------------------------
1424 {
1425  if( m_pPoints ) // without search engine
1426  {
1427  return( m_pPoints->Get_Count() );
1428  }
1429  else // using search engine
1430  {
1431  return( m_Search.Get_Nearest_Points(x, y, m_maxPoints, m_Radius, Indices, Distances) >= m_minPoints );
1432  }
1433 }
1434 
1435 //---------------------------------------------------------
1437 {
1438  return( Get_Points(p.x, p.y, Indices, Distances) );
1439 }
1440 
1441 
1443 // //
1444 // //
1445 // //
1447 
1448 //---------------------------------------------------------
CSG_KDTree_2D::~CSG_KDTree_2D
virtual ~CSG_KDTree_2D(void)
Definition: kdtree.cpp:324
CSG_Table_Record::asDouble
double asDouble(int Field) const
Definition: table_record.cpp:527
CSG_KDTree_3D::Get_Nearest_Value
virtual bool Get_Nearest_Value(double Coordinate[3], double &Value)
Definition: kdtree.cpp:967
CSG_Points_3D
Definition: geo_tools.h:320
CSG_KDTree::m_Points
CSG_Matrix m_Points
Definition: shapes.h:1251
_TL
#define _TL(s)
Definition: api_core.h:1489
CSG_Parameters_Point_Search::Create
virtual bool Create(class CSG_Parameters *pParameters, const CSG_String &Parent="", size_t minPoints=0)
Definition: kdtree.cpp:1093
CSG_Points_3D::Add
bool Add(double x, double y, double z)
Definition: geo_classes.cpp:582
CSG_Vector::Get_Data
double * Get_Data(void) const
Definition: mat_tools.h:384
CSG_KDTree::Get_Match_Shape
CSG_Shape * Get_Match_Shape(size_t i) const
Definition: kdtree.cpp:291
CSG_Shapes::Get_Shape
virtual CSG_Shape * Get_Shape(const CSG_Point &Point, double Epsilon=0.)
Definition: shapes.cpp:499
CSG_KDTree_2D::Get_Nearest_Shape
virtual CSG_Shape * Get_Nearest_Shape(double Coordinate[2])
Definition: kdtree.cpp:601
CSG_Parameter::asInt
int asInt(void) const
Definition: parameters.h:282
CSG_KDTree_3D::Destroy
virtual bool Destroy(void)
Definition: kdtree.cpp:863
CSG_Matrix::Get_NRows
sLong Get_NRows(void) const
Definition: mat_tools.h:523
CSG_Shape::Get_Z
virtual double Get_Z(int iPoint=0, int iPart=0, bool bAscending=true) const
Definition: shapes.h:195
CSG_KDTree_3D::Get_Nearest_Point
virtual bool Get_Nearest_Point(double Coordinate[3], size_t &Index, double &Distance)
Definition: kdtree.cpp:953
CSG_Parameters_Point_Search::Do_Use_All
bool Do_Use_All(void) const
Definition: shapes.h:1376
CSG_Rect::Get_XMax
double Get_XMax(void) const
Definition: geo_tools.h:503
CSG_Parameters_Point_Search::On_Parameters_Enable
virtual bool On_Parameters_Enable(class CSG_Parameters *pParameters, class CSG_Parameter *pParameter)
Definition: kdtree.cpp:1171
CSG_Parameters_Point_Search::On_Parameter_Changed
virtual bool On_Parameter_Changed(class CSG_Parameters *pParameters, class CSG_Parameter *pParameter)
Definition: kdtree.cpp:1156
CSG_KDTree::m_pKDTree
void * m_pKDTree
Definition: shapes.h:1245
SG_Get_Rounded_To_SignificantFigures
double SG_Get_Rounded_To_SignificantFigures(double Value, int Decimals)
Definition: mat_tools.cpp:107
CSG_KDTree_2D::Get_Nearest_Value
virtual bool Get_Nearest_Value(double Coordinate[2], double &Value)
Definition: kdtree.cpp:586
CSG_Parameters::Add_Node
CSG_Parameter * Add_Node(const CSG_String &ParentID, const CSG_String &ID, const CSG_String &Name, const CSG_String &Description)
Definition: parameters.cpp:440
CSG_KDTree::m_Distances
CSG_Vector m_Distances
Definition: shapes.h:1249
CSG_Parameters_Point_Search_KDTree_2D::Set_Location
sLong Set_Location(double x, double y)
Definition: kdtree.cpp:1281
CSG_Array_sLong::Create
sLong * Create(const CSG_Array_sLong &Array)
Definition: api_memory.cpp:612
CSG_Parameters::Add_Double
CSG_Parameter * Add_Double(const CSG_String &ParentID, const CSG_String &ID, const CSG_String &Name, const CSG_String &Description, double Value=0.0, double Minimum=0.0, bool bMinimum=false, double Maximum=0.0, bool bMaximum=false)
Definition: parameters.cpp:475
CSG_KDTree_3D::Get_Duplicates
virtual size_t Get_Duplicates(double Coordinate[3], CSG_Array_sLong &Indices, CSG_Vector &Distances)
Definition: kdtree.cpp:990
CSG_Rect::Get_Area
double Get_Area(void) const
Definition: geo_tools.h:510
CSG_KDTree::_On_Construction
void _On_Construction(void)
Definition: kdtree.cpp:260
CSG_KDTree_2D::Get_Duplicates
virtual size_t Get_Duplicates(double Coordinate[2], CSG_Array_sLong &Indices, CSG_Vector &Distances)
Definition: kdtree.cpp:609
CSG_Array_sLong::Get_Size
sLong Get_Size(void) const
Definition: api_core.h:492
CSG_KDTree_3D::Get_Point_Value
virtual double Get_Point_Value(size_t i) const
Definition: shapes.h:1334
CSG_Points_3D::Clear
bool Clear(void)
Definition: geo_tools.h:326
CSG_Array_sLong::Dec_Array
bool Dec_Array(bool bShrink=true)
Definition: api_core.h:500
CSG_KDTree::~CSG_KDTree
virtual ~CSG_KDTree(void)
Definition: kdtree.cpp:256
CSG_Shapes::Get_ZMin
double Get_ZMin(void)
Definition: shapes.h:815
CSG_Table_Record::is_NoData
bool is_NoData(int Field) const
Definition: table_record.cpp:416
CSG_String::Cmp
int Cmp(const CSG_String &String) const
Definition: api_string.cpp:515
CSG_Matrix::Get_Data
double ** Get_Data(void) const
Definition: mat_tools.h:526
CSG_Shape::Get_Point
virtual TSG_Point Get_Point(int iPoint=0) const =0
CSG_Matrix::Get_NCols
sLong Get_NCols(void) const
Definition: mat_tools.h:522
CSG_Matrix::Create
bool Create(const CSG_Matrix &Matrix)
Definition: mat_matrix.cpp:836
CSG_KDTree_2D::Create
bool Create(CSG_Shapes *pPoints, int Field=-1)
Definition: kdtree.cpp:343
CSG_Parameters_Point_Search::CSG_Parameters_Point_Search
CSG_Parameters_Point_Search(void)
Definition: kdtree.cpp:1083
CSG_Vector
Definition: mat_tools.h:360
CSG_Data_Object
Definition: dataobject.h:180
CSG_Point
Definition: geo_tools.h:135
CSG_Parameter
Definition: parameters.h:207
CSG_Rect::Get_YMin
double Get_YMin(void) const
Definition: geo_tools.h:504
CSG_Vector::Create
bool Create(const CSG_Vector &Vector)
Definition: mat_matrix.cpp:87
CSG_Parameter::asShapes
CSG_Shapes * asShapes(void) const
Definition: parameter.cpp:1048
CSG_Parameters_Point_Search_KDTree_2D::Get_Point
bool Get_Point(sLong Index, double &x, double &y, double &z)
Definition: kdtree.cpp:1305
CSG_KDTree::CSG_KDTree
CSG_KDTree(void)
Definition: kdtree.cpp:250
CSG_Array_sLong::Destroy
void Destroy(void)
Definition: api_core.h:487
CSG_Parameters::Set_Enabled
void Set_Enabled(bool bEnabled=true)
Definition: parameters.cpp:405
CSG_KDTree_3D::CSG_KDTree_3D
CSG_KDTree_3D(void)
Definition: kdtree.cpp:699
sLong
signed long long sLong
Definition: api_core.h:158
CSG_Parameters_Point_Search_KDTree_2D::Get_Points
bool Get_Points(double x, double y, CSG_Points_3D &Points)
Definition: kdtree.cpp:1359
CSG_Parameters_Point_Search::Update
bool Update(void)
Definition: kdtree.cpp:1199
CSG_KDTree::m_Indices
CSG_Array_sLong m_Indices
Definition: shapes.h:1247
CSG_Parameters_Point_Search_KDTree_2D::Finalize
bool Finalize(void)
Definition: kdtree.cpp:1265
CSG_Table::Get_Count
sLong Get_Count(void) const
Definition: table.h:392
CSG_Parameters::Add_Int
CSG_Parameter * Add_Int(const CSG_String &ParentID, const CSG_String &ID, const CSG_String &Name, const CSG_String &Description, int Value=0, int Minimum=0, bool bMinimum=false, int Maximum=0, bool bMaximum=false)
Definition: parameters.cpp:470
CSG_KDTree_2D::Get_Nearest_Points
virtual size_t Get_Nearest_Points(double Coordinate[2], size_t Count, double Radius)
Definition: kdtree.cpp:500
CSG_PointCloud::Get_Shape
virtual CSG_Shape * Get_Shape(const CSG_Point &Point, double Epsilon=0.)
Definition: pointcloud.cpp:1399
CSG_Vector::Get_N
int Get_N(void) const
Definition: mat_tools.h:382
CSG_Table::Get_Maximum
double Get_Maximum(int iField) const
Definition: table.h:376
CSG_KDTree::m_pAdaptor
class CSG_KDTree_Adaptor * m_pAdaptor
Definition: shapes.h:1243
pointcloud.h
CSG_Matrix::Set_Rows
bool Set_Rows(sLong nRows)
Definition: mat_matrix.cpp:974
CSG_Shapes::Get_Extent
virtual const CSG_Rect & Get_Extent(void)
Definition: shapes.h:813
CSG_KDTree_2D::Destroy
virtual bool Destroy(void)
Definition: kdtree.cpp:482
parameters.h
CSG_String::Format
static CSG_String Format(const char *Format,...)
Definition: api_string.cpp:270
CSG_KDTree_3D::Get_Nearest_Points
virtual size_t Get_Nearest_Points(double Coordinate[3], size_t Count, double Radius)
Definition: kdtree.cpp:881
CSG_Parameters::Get_Identifier
const CSG_String & Get_Identifier(void) const
Definition: parameters.h:1729
CSG_KDTree_3D::Get_Nearest_Shape
virtual CSG_Shape * Get_Nearest_Shape(double Coordinate[3])
Definition: kdtree.cpp:982
CSG_Vector::Destroy
bool Destroy(void)
Definition: mat_matrix.cpp:130
CSG_Parameters_Point_Search::m_pParameters
class CSG_Parameters * m_pParameters
Definition: shapes.h:1393
CSG_String
Definition: api_core.h:563
CSG_KDTree::Get_Match_Index
size_t Get_Match_Index(size_t i) const
Definition: shapes.h:1228
CSG_Parameters_Point_Search::m_maxPoints
size_t m_maxPoints
Definition: shapes.h:1389
CSG_KDTree_3D::Create
bool Create(CSG_Shapes *pPoints, int Field=-1, int zField=-1, double zScale=1.)
Definition: kdtree.cpp:727
CSG_Table::Get_Minimum
double Get_Minimum(int iField) const
Definition: table.h:375
CSG_KDTree_2D::Get_Nearest_Point
virtual bool Get_Nearest_Point(double Coordinate[2], size_t &Index, double &Distance)
Definition: kdtree.cpp:572
CSG_String::is_Empty
bool is_Empty(void) const
Definition: api_string.cpp:178
CSG_Parameters_Point_Search::m_minPoints
size_t m_minPoints
Definition: shapes.h:1389
SG_DELETE_SAFE
#define SG_DELETE_SAFE(PTR)
Definition: api_core.h:206
SSG_Point::x
double x
Definition: geo_tools.h:129
CSG_Matrix::Destroy
bool Destroy(void)
Definition: mat_matrix.cpp:923
CSG_Parameters_Point_Search_KDTree_2D::Initialize
bool Initialize(CSG_Shapes *pPoints, int zField=-1)
Definition: kdtree.cpp:1246
CSG_Rect::Get_YMax
double Get_YMax(void) const
Definition: geo_tools.h:505
CSG_Rect::Get_XMin
double Get_XMin(void) const
Definition: geo_tools.h:502
CSG_KDTree::Get_Version
static const char * Get_Version(void)
Definition: kdtree.cpp:267
SSG_Point::y
double y
Definition: geo_tools.h:129
CSG_KDTree::Destroy
virtual bool Destroy(void)
Definition: kdtree.cpp:279
CSG_KDTree::Get_Point
double * Get_Point(int i) const
Definition: shapes.h:1233
CSG_Parameters::Set_Parameter
bool Set_Parameter(const CSG_String &ID, CSG_Parameter *pValue)
Definition: parameters.cpp:1405
CSG_Parameters_Point_Search_KDTree_2D::CSG_Parameters_Point_Search_KDTree_2D
CSG_Parameters_Point_Search_KDTree_2D(void)
Definition: kdtree.cpp:1235
CSG_Shapes
Definition: shapes.h:775
CSG_PointCloud
Definition: pointcloud.h:105
CSG_KDTree::Get_Match_Count
size_t Get_Match_Count(void) const
Definition: shapes.h:1227
CSG_Parameters
Definition: parameters.h:1690
CSG_Array_sLong
Definition: api_core.h:479
CSG_KDTree_2D::Get_Point_Value
virtual double Get_Point_Value(size_t i) const
Definition: shapes.h:1284
CSG_Parameter::Cmp_Identifier
bool Cmp_Identifier(const CSG_String &Identifier) const
Definition: parameter.cpp:553
CSG_Vector::Set_Rows
bool Set_Rows(sLong nRows)
Definition: mat_matrix.cpp:140
CSG_KDTree_3D::~CSG_KDTree_3D
virtual ~CSG_KDTree_3D(void)
Definition: kdtree.cpp:705
CSG_Matrix
Definition: mat_tools.h:478
CSG_Shape
Definition: shapes.h:141
CSG_KDTree_2D::CSG_KDTree_2D
CSG_KDTree_2D(void)
Definition: kdtree.cpp:318
CSG_Shapes::Get_ZMax
double Get_ZMax(void)
Definition: shapes.h:816
CSG_Parameters_Point_Search::m_Radius
double m_Radius
Definition: shapes.h:1391
CSG_Parameters::Add_Choice
CSG_Parameter * Add_Choice(const CSG_String &ParentID, const CSG_String &ID, const CSG_String &Name, const CSG_String &Description, const CSG_String &Items, int Default=0)
Definition: parameters.cpp:533