Superpixel Segmentation
- Author: O.Conrad (c) 2019
- Menu: Imagery | Segmentation
Description
The Superpixel Segmentation tool implements the 'Simple Linear Iterative Clustering' (SLIC) algorithm, an image segmentation method described in Achanta et al. (2010).
SLIC is a simple and efficient method to decompose an image in visually homogeneous regions. It is based on a spatially localized version of k-means clustering. Similar to mean shift or quick shift, each pixel is associated to a feature vector.
This tool is follows the SLIC implementation created by Vedaldi and Fulkerson as part of the VLFeat library.
References
- SLIC at VLFeat.org
- Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & S__sstrunk, S. (2010): Slic Superpixels. EPFL Technical Report no. 149300, June 2010. epfl.ch.
- Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & S__sstrunk, S. (2012): SLIC Superpixels compared to state-of-the-art superpixel methods. IEEE transactions on pattern analysis and machine intelligence, 34(11), 2274-2282. ieee.org.
Parameters
| Name | Type | Identifier | Description | Constraints |
Input | Features | grid list, input | FEATURES | - | - |
Output | Segments | shapes, output | POLYGONS | - | - |
Superpixels | grid list, output, optional | SUPERPIXELS | - | - |
Options | Grid System | grid system | PARAMETERS_GRID_SYSTEM | - | - |
Normalize | boolean | NORMALIZE | - | Default: 0 |
Maximum Iterations | integer number | MAX_ITERATIONS | - | Minimum: 1
Default: 100 |
Regularization | floating point number | REGULARIZATION | - | Minimum: 0.000000
Default: 1.000000 |
Region Size | integer number | SIZE | Starting 'cell size' of the superpixels given as number of cells. | Minimum: 1
Default: 10 |
Minimum Region Size | integer number | SIZE_MIN | In postprocessing join segments, which cover less cells than specified here, to a larger neighbour segment. | Minimum: 1
Default: 1 |
Create Superpixel Grids | boolean | SUPERPIXELS_DO | - | Default: 0 |
Post-Processing | choice | POSTPROCESSING | - | Available Choices:
[0] none
[1] unsupervised classification
Default: 0 |
Number of Clusters | integer number | NCLUSTER | - | Minimum: 2
Default: 12 |
Split Clusters | boolean | SPLIT_CLUSTERS | - | Default: 1 |
Command Line
Usage: saga_cmd imagery_segmentation 4 [-FEATURES ] [-NORMALIZE ] [-POLYGONS ] [-MAX_ITERATIONS ] [-REGULARIZATION ] [-SIZE ] [-SIZE_MIN ] [-SUPERPIXELS_DO ] [-SUPERPIXELS ] [-POSTPROCESSING ] [-NCLUSTER ] [-SPLIT_CLUSTERS ]
-FEATURES: Features
grid list, input
-NORMALIZE: Normalize
boolean
Default: 0
-POLYGONS: Segments
shapes, output
-MAX_ITERATIONS: Maximum Iterations
integer number
Minimum: 1
Default: 100
-REGULARIZATION: Regularization
floating point number
Minimum: 0.000000
Default: 1.000000
-SIZE: Region Size
integer number
Minimum: 1
Default: 10
-SIZE_MIN: Minimum Region Size
integer number
Minimum: 1
Default: 1
-SUPERPIXELS_DO: Create Superpixel Grids
boolean
Default: 0
-SUPERPIXELS: Superpixels
grid list, output, optional
-POSTPROCESSING: Post-Processing
choice
Available Choices:
[0] none
[1] unsupervised classification
Default: 0
-NCLUSTER: Number of Clusters
integer number
Minimum: 2
Default: 12
-SPLIT_CLUSTERS: Split Clusters
boolean
Default: 1