Random Forest Table Classification (ViGrA)
- Author: B. Bechtel, O.Conrad (c) 2015
- Menu: Table | Tools
Description
Random Forest Table Classification.
References
Parameters
Name | Type | Identifier | Description | Constraints | |
---|---|---|---|---|---|
Input | Table | table, input | TABLE | Table with features, must include class-ID | - |
Output | Feature Importances | table, output | IMPORTANCES | - | - |
Options | Features | table fields | FEATURES | Select features (table fields) for classification | - |
Prediction | table field | PREDICTION | This is field that will have the prediction results. If not set it will be added to the table. | - | |
Training | table field | TRAINING | this is the table field that defines the training classes | - | |
Use Label as Identifier | boolean | LABEL_AS_ID | Use training area labels as identifier in classification result, assumes all label values are integer numbers! | Default: 0 | |
Tree Count | integer number | RF_TREE_COUNT | How many trees to create? | Minimum: 1 Default: 32 | |
Samples per Tree | floating point number | RF_TREE_SAMPLES | Specifies the fraction of the total number of samples used per tree for learning. | Minimum: 0.000000 Maximum: 1.000000 Default: 1.000000 | |
Sample with Replacement | boolean | RF_REPLACE | Sample from training population with or without replacement? | Default: 1 | |
Minimum Node Split Size | integer number | RF_SPLIT_MIN_SIZE | Number of examples required for a node to be split. Choose 1 for complete growing. | Minimum: 1 Default: 1 | |
Features per Node | choice | RF_NODE_FEATURES | - | Available Choices: [0] logarithmic [1] square root [2] all Default: 1 | |
Stratification | choice | RF_STRATIFICATION | Specifies stratification strategy. Either none, equal amount of class samples, or proportional to fraction of class samples. | Available Choices: [0] none [1] equal [2] proportional Default: 0 |
Command Line
Usage: saga_cmd imagery_vigra 11 [-TABLE] [-FEATURES ] [-PREDICTION ] [-TRAINING ] [-LABEL_AS_ID ] [-IMPORTANCES ] [-RF_TREE_COUNT ] [-RF_TREE_SAMPLES ] [-RF_REPLACE ] [-RF_SPLIT_MIN_SIZE ] [-RF_NODE_FEATURES ] [-RF_STRATIFICATION ] -TABLE: Table table, input -FEATURES: Features table fields -PREDICTION: Prediction table field -TRAINING: Training table field -LABEL_AS_ID: Use Label as Identifier boolean Default: 0 -IMPORTANCES: Feature Importances table, output -RF_TREE_COUNT: Tree Count integer number Minimum: 1 Default: 32 -RF_TREE_SAMPLES: Samples per Tree floating point number Minimum: 0.000000 Maximum: 1.000000 Default: 1.000000 -RF_REPLACE: Sample with Replacement boolean Default: 1 -RF_SPLIT_MIN_SIZE: Minimum Node Split Size integer number Minimum: 1 Default: 1 -RF_NODE_FEATURES: Features per Node choice Available Choices: [0] logarithmic [1] square root [2] all Default: 1 -RF_STRATIFICATION: Stratification choice Available Choices: [0] none [1] equal [2] proportional Default: 0